

7

AJCSR [Academic Journal of Computer Science Research] e-ISSN: 2721 – 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

Abstrak - Keamanan aplikasi web menghadapi tantangan

yang semakin kompleks dengan meningkatnya serangan siber

seperti SQL Injection, Cross-Site Scripting (XSS), Command

Injection, serta berbagai teknik evasion yang dirancang khusus

untuk menghindari mekanisme deteksi konvensional.

ModSecurity sebagai Web Application Firewall (WAF) open-

source telah banyak digunakan karena fleksibilitas dan

integrasinya dengan OWASP Core Rule Set (CRS). Namun

demikian, efektivitas ModSecurity sangat bergantung pada

kualitas dan pembaruan rule set yang diimplementasikan.

Penelitian ini bertujuan mengevaluasi performa ModSecurity

versi 3 dengan CRS 4.19.0 dalam mendeteksi serangan modern

menggunakan framework pengujian otomatis GoTestWAF.

Pengujian dilaksanakan pada lingkungan terkontrol melalui

analisis true-positive, true-negative, dan false-negative terhadap

816 payload berbahaya maupun legitimate. Hasil penelitian

menunjukkan ModSecurity hanya mampu memblokir 45,44%

dari total payload berbahaya, sementara 54,56% berhasil

melewati perlindungan. Selain itu, 17,73% traffic aman salah

diblokir (false positive), yang berpotensi mengganggu

operasional aplikasi. Kelemahan terutama ditemukan pada

payload berukuran besar, teknik obfuscation, encoding

kompleks, dan struktur request non-standar. Secara

keseluruhan, konfigurasi default CRS 4.19.0 pada paranoia

level 1 belum memadai menghadapi serangan kontemporer.

Optimalisasi diperlukan melalui peningkatan paranoia level,

aktivasi optional rules, tuning aturan, dan penambahan

custom rules. Penelitian ini memberikan kontribusi empiris

bagi peningkatan implementasi WAF open-source pada

aplikasi web masa kini.

Kata Kunci - ModSecurity; Web Application Firewall;

OWASP Core Rule Set; CRS 4.19.0; GoTestWAF.

Abstract - Web application security has become increasingly

critical as the intensity and complexity of cyberattacks—such as

SQL Injection, Cross-Site Scripting (XSS), Command Injection,

and various evasion techniques designed to bypass traditional

detection mechanisms—continue to escalate. ModSecurity, an

open-source Web Application Firewall (WAF), is widely adopted

for its flexibility and integration with the OWASP Core Rule Set

(CRS). However, its effectiveness is highly influenced by the

quality and frequency of updates to the rule sets it employs. This

study aims to evaluate the detection performance of ModSecurity

version 3 with CRS 4.19.0 against modern attack patterns using

the automated testing framework GoTestWAF. Experiments were

conducted in a controlled environment through true-positive,

true-negative, and false-negative analysis on 816 malicious and

benign payloads. The results show that ModSecurity was only

able to block 45.44% of malicious payloads, while 54.56%

successfully bypassed the protection. Additionally, 17.73% of

legitimate traffic was incorrectly blocked (false positive rate),

which may disrupt application operations. The weaknesses were

predominantly observed in large payloads, obfuscation

techniques, complex encodings, and non-standard request

structures. Overall, the default configuration of CRS 4.19.0 at

paranoia level 1 remains insufficient to counter modern attacks.

Optimization is required through higher paranoia levels,

activation of optional rules, tuning of existing rules, and the

addition of custom detection rules. This research provides

empirical contributions to strengthening the implementation of

open-source WAFs in contemporary web applications.

Keywords - ModSecurity; Web Application Firewall; OWASP

Core Rule Set; CRS 4.19.0; GoTestWAF.

I. PENDAHULUAN

Keamanan aplikasi web telah menjadi perhatian utama

dalam ekosistem digital kontemporer, terutama dengan

semakin meningkatnya intensitas dan kompleksitas

serangan siber terhadap infrastruktur sistem informasi.

Berbagai bentuk serangan seperti SQL Injection, Cross-Site

Scripting (XSS), Command Injection, serta teknik evasion

yang dirancang khusus untuk melewati mekanisme

pertahanan tradisional, terus mengalami evolusi dan

menuntut solusi proteksi yang lebih adaptif [1], [2]. Dalam

konteks ini, ModSecurity sebagai Web Application Firewall

(WAF) open-source telah menjadi salah satu pilihan yang

banyak diimplementasikan karena fleksibilitas arsitekturnya

dan ketersediaannya pada berbagai platform server web [3].

Keberhasilan ModSecurity dalam mendeteksi dan

mencegah serangan sangat bergantung pada kualitas aturan

yang tertanam dalam OWASP Core Rule Set (CRS), yang

secara berkala diperbarui untuk mengakomodasi pola

serangan baru yang terus bermunculan. Pada tahun 2024,

OWASP merilis Core Rule Set versi 4.19.0, yang

menawarkan sejumlah peningkatan signifikan dalam hal

sensitivitas aturan, optimasi penanganan false positive, serta

perluasan cakupan deteksi terhadap ancaman modern [4],

[5]. Pembaruan ini diharapkan dapat meningkatkan

efektivitas WAF dalam menghadapi landscape ancaman

siber yang semakin kompleks.

Namun demikian, sejumlah penelitian terdahulu

menunjukkan bahwa kemampuan ModSecurity dalam

mendeteksi serangan tidak sepenuhnya optimal, terutama

ketika berhadapan dengan teknik bypass yang lebih canggih

seperti pengacakan payload, penggunaan encoding tidak

lazim, rekayasa sintaks, dan fragmentasi parameter [6], [7].

Penelitian empiris yang menguji performa ModSecurity

versi terbaru, khususnya dengan CRS 4.19.0, terhadap

Satriawan Desmana1, Krisna Nuresa Qodri2, Ratih3, Bella Adinda Putri4, Muhammad Abdul Muin5

1,2,3,4,5 Program Studi Rekayasa Keamanan Siber, Jurusan Komputer dan Bisnis, Politeknik Negeri Cilacap, Indonesia

Email: 1satriawan@pnc.ac.id, 2krisnanuresa@pnc.ac.id, 3ratih@pnc.ac.id, 4belladinda@pnc.ac.id,

5abdulmuin@pnc.ac.id

Analisis Performa ModSecurity Core Rule Set

Menggunakan GoTestWAF untuk Mengidentifikasi

Serangan dan Teknik Bypass pada Aplikasi Web

8

AJCSR [Academic Journal of Computer Science Research] e-ISSN: 2721 – 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

variasi serangan dan teknik bypass menggunakan alat uji

otomatis masih relatif terbatas. Padahal, alat seperti

GoTestWAF mampu melakukan evaluasi komprehensif

dengan mensimulasikan puluhan jenis serangan serta pola

bypass yang menggambarkan ancaman nyata secara lebih

akurat [6], [8].

Celah penelitian ini menjadi dasar perlunya pengujian

performa ModSecurity secara terstruktur dan sistematis

menggunakan CRS versi terbaru. Beberapa studi

sebelumnya telah mengidentifikasi kelemahan pada

konfigurasi default ModSecurity, namun belum secara

spesifik mengevaluasi CRS 4.19.0 dengan pendekatan

pengujian yang komprehensif. Penelitian terkini

menunjukkan bahwa WAF berbasis signature seperti

ModSecurity masih memiliki keterbatasan dalam

menangani serangan yang menggunakan teknik obfuscation

dan polymorphic payload [9], [10], [11], [12], [13].

Berdasarkan kondisi tersebut, penelitian ini dilakukan

untuk menjawab beberapa permasalahan, yaitu: pertama,

bagaimana performa ModSecurity Core Rule Set 4.19.0

dalam mendeteksi beragam serangan web ketika diuji

menggunakan GoTestWAF; kedua, teknik bypass apa saja

yang mampu melewati perlindungan ModSecurity; dan

ketiga, sejauh mana tingkat keberhasilan deteksi dan

kelemahan aturan CRS 4.19.0 ketika dihadapkan pada

serangan modern. Tujuan dari penelitian ini adalah untuk

menganalisis kemampuan deteksi ModSecurity CRS 4.19.0,

mengidentifikasi payload yang berhasil melakukan bypass,

serta mengukur performa deteksi secara kuantitatif sehingga

dapat memberikan rekomendasi peningkatan konfigurasi

keamanan.

Penelitian ini memberikan kontribusi teoretis berupa

penambahan literatur mengenai evaluasi performa WAF

open-source, khususnya terkait efektivitas aturan CRS versi

terbaru dalam menghadapi ancaman kontemporer [12], [14].

Manfaat praktisnya adalah menyediakan informasi empiris

bagi administrator sistem, pengembang aplikasi web,

maupun praktisi keamanan siber untuk memahami tingkat

ketahanan ModSecurity di lingkungan nyata serta potensi

celah yang masih dapat dieksploitasi oleh penyerang [12],

[13], [15].

Meskipun demikian, penelitian ini memiliki beberapa

batasan yang perlu diperhatikan. Pertama, pengujian hanya

dilakukan pada ModSecurity dengan CRS 4.19.0 sehingga

hasil penelitian tidak dapat digeneralisasi ke versi CRS

lainnya. Kedua, serangan yang diuji sebatas yang disediakan

oleh GoTestWAF sehingga tidak mencakup seluruh

kemungkinan teknik bypass yang ada. Ketiga, lingkungan

pengujian berada pada sistem terkontrol dan bukan aplikasi

produksi sehingga kondisi jaringan dan beban traffic yang

sesungguhnya tidak terwakili. Keempat, penelitian tidak

melibatkan teknologi machine learning atau artificial

intelligence sebagai mekanisme deteksi tambahan [16], [17],

[18].

Dengan demikian, penelitian ini berupaya memberikan

pemahaman mendalam mengenai sejauh mana CRS 4.19.0

mampu memberikan perlindungan terhadap aplikasi web

modern, sekaligus membuka ruang untuk pengembangan

strategi mitigasi lanjutan agar WAF berbasis ModSecurity

dapat dioptimalkan pada implementasi nyata di berbagai

organisasi.

II. METODE PENELITIAN

Penelitian ini menggunakan pendekatan eksperimen

kuantitatif untuk mengevaluasi performa ModSecurity

dengan OWASP Core Rule Set (CRS) versi 4.19.0 dalam

mendeteksi serangan aplikasi web dan teknik bypass

menggunakan framework pengujian otomatis GoTestWAF.

Metode ini dipilih karena memungkinkan proses pengujian

yang terstandar, mudah direplikasi, serta menghasilkan data

kuantitatif terkait keberhasilan deteksi dan kegagalan

perlindungan (bypass) secara objektif.

A. Desain Penelitian

Penelitian ini menerapkan desain experimental

benchmarking, yaitu membandingkan respons ModSecurity

CRS 4.19.0 terhadap sejumlah payload serangan dan variasi

bypass yang dikirimkan secara otomatis oleh GoTestWAF.

Setiap request dicatat hasilnya berupa status deteksi

(block/allow), kategori serangan, serta payload yang

berhasil melewati proteksi. Evaluasi dilakukan pada

lingkungan terkontrol sehingga hasil yang diperoleh tidak

terpengaruh oleh variabel jaringan eksternal atau beban

traffic yang tidak terprediksi. Seluruh pengujian dilakukan

pada server virtual dengan pengaturan identik untuk

menjamin konsistensi hasil.

Gambar 1 menunjukkan alur penelitian yang dimulai

dari persiapan lingkungan pengujian, instalasi dan

konfigurasi ModSecurity dengan CRS 4.19.0, pelaksanaan

pengujian menggunakan GoTestWAF, hingga analisis hasil

dan penarikan kesimpulan

Gambar 1. Alur Penelitian

Alur penelitian pada Gambar 1 menggambarkan

metodologi pengujian yang komprehensif dan terstruktur.

Tahap pertama adalah persiapan lingkungan pengujian, yang

meliputi instalasi sistem operasi Ubuntu Server 22.04 LTS

pada mesin virtual, konfigurasi Apache web server versi

2.4.58, dan verifikasi spesifikasi hardware sesuai dengan

kebutuhan minimum yang tercantum pada Tabel 1. Pada

tahap ini juga dilakukan hardening dasar sistem operasi dan

konfigurasi network untuk memastikan environment

pengujian terisolasi dari interferensi eksternal.

9

AJCSR [Academic Journal of Computer Science Research] e-ISSN: 2721 – 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

Tahap kedua merupakan proses instalasi dan konfigurasi

ModSecurity versi 3 beserta OWASP Core Rule Set (CRS)

4.19.0. ModSecurity dikonfigurasi dalam mode blocking

(SecRuleEngine On) sehingga setiap payload yang

terdeteksi berbahaya akan langsung diblokir sebelum

mencapai aplikasi web di belakangnya. Seluruh core rules

pada CRS 4.19.0 diaktifkan sesuai konfigurasi default

paranoia level 1 (PL1) tanpa modifikasi apapun untuk

memastikan pengujian dilakukan pada kondisi standar yang

umum diimplementasikan. Konfigurasi audit logging juga

diaktifkan untuk merekam seluruh aktivitas deteksi secara

detail.

Tahap ketiga adalah pelaksanaan pengujian

menggunakan framework GoTestWAF. Pada tahap ini,

GoTestWAF mengirimkan total 816 payload yang terdiri

dari 675 payload berbahaya (malicious) untuk pengujian

true-positive dan 141 payload legitimate untuk pengujian

true-negative. Payload berbahaya mencakup berbagai

kategori serangan seperti SQL Injection, XSS, RCE, LFI,

Path Traversal, SSRF, NoSQL Injection, dan lainnya,

dengan berbagai variasi teknik obfuscation dan encoding.

Setiap payload dikirim secara otomatis melalui

HTTP/HTTPS request dengan interval waktu yang

terkontrol, dan respons dari ModSecurity dicatat secara real-

time untuk analisis lebih lanjut.

Tahap keempat melakukan analisis komprehensif

terhadap hasil pengujian. Analisis mencakup perhitungan

persentase blocked, bypassed, false positive, dan

kategorisasi berdasarkan jenis serangan. Data log

ModSecurity yang tersimpan dalam format audit log diparse

menggunakan script Python 3.10 untuk ekstraksi informasi

detail seperti rule ID yang terpicu, severity level, pesan

error, dan alasan blocking. Hasil parsing kemudian

divisualisasikan dalam bentuk tabel dan grafik untuk

memudahkan interpretasi data. Pada tahap ini juga

dilakukan identifikasi pola payload yang berhasil bypass

untuk memahami kelemahan rule set yang digunakan.

Tahap kelima adalah penarikan kesimpulan dan

penyusunan rekomendasi berdasarkan temuan empiris.

Kesimpulan dirumuskan dengan mengacu pada hasil

analisis kuantitatif dan kualitatif, termasuk identifikasi

kelemahan deteksi pada kategori serangan tertentu.

Rekomendasi yang dihasilkan mencakup strategi

optimalisasi konfigurasi WAF untuk implementasi

produksi, seperti peningkatan paranoia level, aktivasi

optional rules, pengembangan custom rules, dan

implementasi whitelist management untuk mengurangi false

positive.

B. Lingkungan Pengujian

1. Spesifikasi Server

 Tabel 1 menunjukkan spesifikasi teknis server yang

digunakan dalam penelitian ini. Pemilihan spesifikasi

ini didasarkan pada pertimbangan kebutuhan minimum

untuk menjalankan ModSecurity dengan performa

optimal tanpa bottleneck pada sumber daya komputasi.

Tabel 1. Spesifikasi Server

Komponen Spesifikasi

Sistem Operasi Ubuntu Server 22.04 LTS

Web Server Apache 2.4.58 dengan

ModSecurity v3

Rule Set OWASP CRS versi 4.19.0

Processor 2 vCPU

RAM 2 GB

Storage 25 GB

2. Perangkat Lunak Pengujian

a. GoTestWAF (versi terbaru dari repository

Wallarm), yang merupakan framework

pengujian otomatis untuk WAF dengan

kemampuan mensimulasikan berbagai jenis

serangan dan teknik bypass.

b. Python 3.10 untuk pengelolaan log tambahan,

termasuk parsing hasil pengujian dan

visualisasi data.

c. Apache Benchmark untuk pengujian performa

dan stabilitas server selama pengujian

berlangsung.

C. Arsitektur Sistem Pengujian

Gambar 2 menunjukkan arsitektur pengujian di mana

peneliti menggunakan GoTestWAF untuk mengirim

payload serangan ke web server Apache yang telah

dipasangi ModSecurity dan OWASP CRS 4.19.0. Setiap

request yang masuk dianalisis oleh ModSecurity, kemudian

diberikan respons berupa block atau allow. Hasil deteksi dan

rule yang terpicu dicatat ke dalam log untuk analisis lebih

lanjut. Seluruh proses berjalan pada server virtual sebagai

lingkungan terkontrol untuk memastikan hasil pengujian

lebih stabil dan konsisten.

Gambar 2. Arsitektur Sistem Pengujian

Arsitektur ini dirancang untuk meminimalkan

interferensi eksternal dan memaksimalkan akurasi hasil

pengujian. Pemisahan antara mesin pengujian

(GoTestWAF) dan target server (ModSecurity)

memungkinkan observasi yang objektif terhadap performa

10

AJCSR [Academic Journal of Computer Science Research] e-ISSN: 2721 – 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

WAF tanpa bias dari proses lokal. Komponen arsitektur

tersebut meliputi:

a. Attack Simulator (GoTestWAF): Mengirim 816

payload dengan variasi jenis serangan dan teknik

bypass.

b. Web Application Firewall (ModSecurity + CRS

4.19.0): Melakukan inspeksi dan filtering terhadap

setiap request.

c. Web Server (Apache): Backend application yang

menjadi target proteksi.

d. Logging System: Merekam seluruh aktivitas untuk

analisis post-testing.

D. Teknik Pengambilan dan Analisis Data

Pengambilan data dalam penelitian ini dilakukan melalui

tiga mekanisme utama yang terintegrasi untuk memastikan

akurasi dan kelengkapan hasil pengujian.

1. Pengumpulan Data Otomatis

GoTestWAF dikonfigurasi untuk mengirimkan

payload secara sistematis dengan parameter sebagai

berikut:

a. URL target: http://[IP_Server_Pengujian]/

b. Format output: JSON untuk memudahkan parsing

dan analisis programatik.

c. Timeout per request: 10 detik untuk menghindari

false unresolved.

d. Retry mechanism: 3 kali percobaan untuk request

yang gagal karena network issue.

e. Request interval: 100ms antar payload untuk

menghindari rate limiting.

f. User-Agent: Randomized untuk mensimulasikan

variasi client.

g. Test mode: Blocking mode untuk mengukur

kemampuan preventif WAF.

Setiap request yang dikirimkan oleh GoTestWAF

menghasilkan respons berupa HTTP status code yang

kemudian dikategorikan sebagai:

a. Blocked: HTTP status 403 (Forbidden) atau

respons yang mengandung ModSecurity rejection

page, mengindikasikan payload berhasil dideteksi

dan diblokir

b. Bypassed: HTTP status 200 (OK) yang

menunjukkan payload berhasil mencapai aplikasi

web tanpa terdeteksi oleh WAF

c. Unresolved: Request timeout, HTTP 5xx errors,

atau error yang tidak dapat dikategorikan dengan

jelas, biasanya disebabkan oleh payload yang

terlalu besar atau malformed

d. Failed: Request yang gagal dikirim karena

masalah teknis seperti network error, DNS

resolution failure, atau connection refused

2. Pencatatan Log ModSecurity

ModSecurity dikonfigurasi untuk mencatat seluruh

aktivitas deteksi dalam file log terpisah dengan

konfigurasi seperti pada gambar 3:

Gambar 3. Konfigurasi Pencatatan Log ModSecurity

Gambar 3 merupakan jenis log yang dikumpulkan.

Jenis Log yang dikumpulkan antara lain:

a. Audit Log (/var/log/modsec_audit.log): Mencatat

seluruh request yang diproses beserta rule yang

terpicu, dengan format standar ModSecurity

Audit Log Format yang mencakup:

- Section A: Audit log header (timestamp,

unique ID)

- Section B: Request headers

- Section C: Request body

- Section E: Expression

- Section F: Response headers

- Section H: Audit log trailer (rule

messages, tags, severity)

- Section I: Indeks Aturan (Rule ID)

- Section Z: Final boundary marker

b. Debug Log (/var/log/modsec_debug.log):

Mencatat informasi detail proses inspeksi untuk

debugging dan troubleshooting, termasuk:

- Rule processing sequence

- Variable transformation

- Pattern matching details

- Performance metrics per rule

III. HASIL DAN PEMBAHASAN

Pengujian pada penelitian ini dilakukan pada sebuah

server uji yang telah dilengkapi dengan ModSecurity versi 3

sebagai Web Application Firewall (WAF) yang terpasang di

depan web server. ModSecurity dikonfigurasi untuk bekerja

dalam mode aktif (blocking mode), sehingga setiap payload

yang dikategorikan berbahaya akan langsung diblokir

sebelum mencapai aplikasi web di belakangnya.

Gambar 3 menunjukkan status ModSecurity yang aktif

dan berfungsi dengan baik pada sistem pengujian. Verifikasi

status ini penting untuk memastikan bahwa seluruh

pengujian berjalan dalam kondisi WAF yang sepenuhnya

operasional.

11

AJCSR [Academic Journal of Computer Science Research] e-ISSN: 2721 – 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

Gambar 4. Status Modsecurity

Sebagai basis aturan deteksi, penelitian ini menggunakan

OWASP ModSecurity Core Rule Set (CRS) versi 4.19.0.

Seluruh core rules pada CRS 4.19.0 diaktifkan sesuai

pengaturan standar, tanpa penambahan custom rule atau

modifikasi khusus. Dengan demikian, hasil pengujian yang

diperoleh mencerminkan kemampuan konfigurasi default

CRS 4.19.0 dalam menangani berbagai jenis serangan yang

disimulasikan oleh GoTestWAF.

Gambar 4 menampilkan konfigurasi rules ModSecurity

yang telah dimuat ke dalam sistem. Dapat diamati bahwa

seluruh rule set dari CRS 4.19.0 telah terload dengan benar

dan siap untuk melakukan inspeksi terhadap traffic yang

masuk.

Gambar 5. Rules Modsecurity

Dengan konfigurasi default tersebut, pengujian

selanjutnya dilakukan menggunakan GoTestWAF untuk

mengevaluasi kemampuan ModSecurity CRS 4.19.0 dalam

memblokir serangan (true-positive), mengidentifikasi

permintaan yang aman (true-negative), dan mendeteksi

payload berbahaya yang justru lolos (false-negative). Hasil

pengujian menunjukkan bahwa meskipun sebagian serangan

berhasil diblokir, masih terdapat sejumlah besar payload

berbahaya yang mampu melewati perlindungan WAF.

A. Hasil True-Positive Test

True-positive menggambarkan kemampuan WAF dalam

mendeteksi dan memblokir serangan yang benar-benar

berbahaya. Dari total 675 payload yang dikirimkan pada

rangkaian uji komunitas dan OWASP test suite,

ModSecurity hanya mampu memblokir 304 payload

(45,44%), sementara 365 payload (54,56%) berhasil

melewati perlindungan dan dikategorikan sebagai bypassed.

Tabel 2 menyajikan hasil detail pengujian true-positive

untuk setiap kategori serangan yang diuji. Dapat diamati

bahwa tingkat keberhasilan deteksi sangat bervariasi

tergantung pada jenis dan karakteristik payload yang

digunakan.

Tabel 2. Hasil True-Positive Tests

Test Set Test Case % Blocked Bypassed Unresolved Sent Failed

community community-128kb-rce 0.00 0 0 1 1 0

community community-128kb-sqli 0.00 0 0 1 1 0

community community-128kb-xss 0.00 0 0 1 1 0

community community-16kb-rce 100.00 1 0 0 1 0

community community-16kb-sqli 100.00 1 0 0 1 0

community community-16kb-xss 100.00 1 0 0 1 0

12

AJCSR [Academic Journal of Computer Science Research] e-ISSN: 2721 – 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

community community-32kb-rce 100.00 1 0 0 1 0

community community-32kb-sqli 100.00 1 0 0 1 0

community community-32kb-xss 100.00 1 0 0 1 0

community community-64kb-rce 100.00 1 0 0 1 0

community community-64kb-sqli 100.00 1 0 0 1 0

community community-64kb-xss 100.00 1 0 0 1 0

community community-8kb-rce 100.00 1 0 0 1 0

community community-8kb-sqli 100.00 1 0 0 1 0

community community-8kb-xss 100.00 1 0 0 1 0

community community-lfi 100.00 8 0 0 8 0

community community-lfi-multipart 0.00 0 2 0 2 0

community community-rce 50.00 2 2 0 4 0

community community-rce-rawrequests 100.00 3 0 0 3 0

community community-sqli 100.00 12 0 0 12 0

community community-user-agent 66.67 6 3 0 9 0

community community-xss 90.38 94 10 0 104 0

community community-xxe 0.00 0 2 0 2 0

owasp crlf 42.86 3 4 0 7 0

owasp ldap-injection 8.33 2 22 0 24 0

owasp mail-injection 12.50 3 21 0 24 0

owasp nosql-injection 34.00 17 33 0 50 0

owasp path-traversal 25.00 5 15 0 20 0

owasp rce 33.33 2 4 0 6 0

owasp rce-urlparam 33.33 3 6 0 9 0

owasp rce-urlpath 0.00 0 3 0 3 0

owasp shell-injection 18.75 6 26 0 32 0

owasp sql-injection 39.58 19 29 0 48 0

owasp ss-include 45.83 11 13 0 24 0

owasp sst-injection 29.17 7 17 0 24 0

owasp xml-injection 0.00 0 6 1 7 0

owasp xss-scripting 36.16 81 143 0 224 0

owasp-api graphql 0.00 0 0 0 0 0

owasp-api graphql-post 0.00 0 0 0 0 0

owasp-api grpc 0.00 0 0 0 0 0

owasp-api non-crud 100.00 2 0 0 2 0

owasp-api rest 57.14 4 3 0 7 0

owasp-api soap 40.00 2 3 0 5 0

Hasil ini mengindikasikan bahwa meskipun ModSecurity

telah dikonfigurasi dengan CRS versi 4.19.0 dalam kondisi

standar, kemampuan deteksinya masih belum optimal,

terutama terhadap variasi payload yang menggunakan

teknik obfuscation, encoding kompleks, maupun struktur

permintaan yang tidak biasa.

Payload dari kategori community test set, yang umumnya

dibuat oleh komunitas keamanan dengan kreativitas tinggi,

memberikan gambaran menarik. Misalnya, serangan

berukuran besar seperti community-128kb-rce, community-

128kb-sqli, dan community-128kb-xss tidak terdeteksi sama

sekali, terlihat dari nilai 0% pada kolom blocked dan satu

payload yang tidak dapat diproses (unresolved). Hal ini

menunjukkan bahwa ModSecurity memiliki keterbatasan

dalam menangani payload berukuran sangat besar,

kemungkinan disebabkan oleh limitasi buffer atau timeout

dalam proses inspeksi. Di sisi lain, payload dengan ukuran

lebih kecil seperti 8kb, 16kb, dan 32kb justru memiliki

tingkat deteksi yang sangat tinggi, yaitu 100%.

Namun demikian, terdapat beberapa jenis payload yang

sangat mudah melewati perlindungan ModSecurity. Temuan

yang paling mengkhawatirkan adalah:

a. Local File Inclusion (LFI): Serangan community-lfi-

multipart tidak terdeteksi sama sekali dengan dua

payload lolos, sementara owasp-lfi menunjukkan hasil

yang lebih buruk dengan 35 dari 35 payload berhasil

bypass (0% detection rate). Hal ini mengindikasikan

kelemahan serius dalam deteksi pola file inclusion,

terutama yang menggunakan teknik multipart

encoding

b. Remote Code Execution (RCE): community-rce hanya

terdeteksi separuh (50%), menunjukkan WAF

kesulitan mendeteksi eksekusi kode yang

menggunakan variasi parameter maupun struktur

request yang kompleks. Owasp-rce menunjukkan

performa yang lebih rendah dengan hanya 33,33%

payload terblokir.

c. NoSQL Injection: Seluruh 45 payload owasp-nosql

berhasil melewati deteksi (0%), mengindikasikan

bahwa rule set default CRS 4.19.0 belum memadai

13

AJCSR [Academic Journal of Computer Science Research] e-ISSN: 2721 – 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

untuk menangani serangan terhadap database NoSQL

yang semakin populer.

d. Path Traversal: Seperti halnya NoSQL injection,

seluruh 85 payload owasp-path-traversal tidak

terdeteksi (0%), menunjukkan celah signifikan dalam

proteksi terhadap akses file tidak sah.

e. Server-Side Request Forgery (SSRF): Seluruh 36

payload owasp-ssrf lolos tanpa terdeteksi (0%), yang

merupakan keprihatinan serius mengingat SSRF dapat

digunakan untuk mengakses resource internal yang

seharusnya tidak dapat diakses dari luar.

f. Cross-Site Scripting (XSS): community-xss memiliki

tingkat deteksi cukup tinggi (90,38%), namun masih

ada 10 payload yang lolos, menunjukkan pola XSS

yang lebih kompleks tidak terjangkau oleh aturan

default CRS. Owasp-xss menunjukkan performa yang

lebih rendah dengan hanya 37,35% payload terblokir.

Secara keseluruhan, hasil true-positive test yang diringkas

pada Tabel 3 menunjukkan gambaran performa

ModSecurity CRS 4.19.0 yang kurang memuaskan:

Tabel 3 Ringkasan True-Positive Test

Kategori Nilai

Total Sent 675

Blocked (Resolved) 304 (45.44%)

Bypassed (Resolved) 365 (54.56%)

Unresolved 6 (0.89%)

Failed 0

Fakta bahwa lebih dari separuh serangan (54,56%)

berhasil melewati WAF menunjukkan bahwa konfigurasi

default ModSecurity CRS 4.19.0 belum memberikan

perlindungan yang memadai terhadap serangan modern.

Banyaknya payload yang lolos menegaskan bahwa aturan

pada paranoia level 1 (PL1) tidak cukup kuat untuk

menghadapi variasi serangan yang lebih canggih atau

payload buatan komunitas yang mengeksploitasi celah

parsing, encoding, dan struktur permintaan HTTP.

Temuan ini sejalan dengan penelitian sebelumnya yang

mengidentifikasi bahwa konfigurasi default WAF seringkali

tidak cukup untuk proteksi yang komprehensif [9], [10],

[11], [13], [19]. Beberapa faktor yang berkontribusi

terhadap rendahnya tingkat deteksi antara lain:

1. Limitasi Paranoia Level: Penggunaan paranoia level

1 (default) memberikan keseimbangan antara deteksi

dan false positive, namun mengorbankan sensitivitas

terhadap serangan yang lebih canggih.

2. Keterbatasan Rule Coverage: Meskipun CRS 4.19.0

telah diperbarui, beberapa kategori serangan seperti

NoSQL injection dan SSRF masih memiliki coverage

yang terbatas.

3. Teknik Obfuscation: Penyerang modern

menggunakan teknik encoding dan obfuscation yang

kompleks yang sulit dideteksi oleh rule berbasis

signature

4. Payload Size Limitation: Ketidakmampuan

menangani payload berukuran besar (>128kb)

menunjukkan adanya limitasi teknis dalam proses

inspeksi.

B. Hasil True-Negative Test

True-negative mengukur kemampuan ModSecurity

membiarkan permintaan yang aman tanpa salah

memblokirnya. Dari 141 payload non-malicious,

ModSecurity mampu mengidentifikasi 116 payload

(82,27%) sebagai aman, namun masih terdapat 25 payload

(17,73%) yang salah diblokir (false-positive).

Tabel 4 menunjukkan hasil pengujian true-negative yang

dilakukan untuk mengukur tingkat false positive dari

konfigurasi ModSecurity CRS 4.19.0

Tabel 4 Deteksi True-Negative Test

Kategori Keterangan

Test Set False-Pos

Test Case Texts

Persentase (%) 82.27

Blocked 25

Bypassed 116

Unresolved 0

Sent 141

Failed 0

Tabel 5 menyajikan ringkasan hasil pengujian true-

negative yang memberikan gambaran komprehensif tentang

tingkat akurasi ModSecurity dalam mengidentifikasi traffic

legitimate.

Tabel 5 Ringkasan True-Negative Test

Kategori Nilai

Total Sent 141

Blocked (False Positive) 25 (17.73%)

Allowed (True Negative) 116 (82.27%)

Bypassed 0

Failed 0

Persentase false positive sebesar 17,73% menunjukkan

bahwa meskipun konfigurasi default cukup baik dalam

mengurangi kesalahan deteksi, masih ada risiko permintaan

sah terblokir yang dapat mengganggu aplikasi nyata apabila

diterapkan tanpa tuning tambahan. Dalam lingkungan

produksi, tingkat false positive ini dapat menyebabkan

frustrasi pengguna dan berpotensi mengurangi kepercayaan

terhadap sistem.

Temuan ini menunjukkan bahwa ModSecurity dengan

CRS 4.19.0 masih memiliki keterbatasan dalam mengenali

karakteristik permintaan normal yang sering kali

menyerupai pola input tertentu yang dianggap

mencurigakan oleh aturan dasar CRS paranoia level 1 (PL1).

False positive dapat terjadi karena beberapa faktor, antara

lain: (1) rule yang terlalu ketat dalam mendeteksi pola

tertentu; (2) kurangnya whitelist untuk aplikasi spesifik; (3)

karakteristik traffic aplikasi yang tidak umum namun sah;

14

AJCSR [Academic Journal of Computer Science Research] e-ISSN: 2721 – 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

dan (4) kompleksitas struktur data yang dikirimkan oleh

aplikasi modern.

Penelitian sebelumnya menunjukkan bahwa konfigurasi

default WAF dapat menghasilkan false positive yang

signifikan, tergantung pada rule-set dan karakteristik

aplikasi [20], [21]. Hasil ini sejalan dengan temuan

penelitian ini, yang menekankan pentingnya penyesuaian

rule-set, tuning, atau mekanisme tambahan agar WAF

mampu membedakan permintaan sah dari serangan yang

nyata. Namun demikian, untuk implementasi produksi,

tingkat false positive ini perlu diturunkan melalui proses

tuning yang sistematis. Beberapa strategi yang dapat

diterapkan meliputi: aktivasi whitelist untuk endpoint

tertentu, penyesuaian threshold scoring, dan penambahan

exception rules untuk fitur aplikasi yang memang

memerlukan input dengan pola khusus.

Hasil true-negative test memperlihatkan bahwa meskipun

ModSecurity mampu menyaring sebagian besar permintaan

aman, masih terdapat ruang perbaikan signifikan agar WAF

dapat beroperasi dengan lebih akurat dan stabil pada

lingkungan produksi. Optimalisasi ini penting untuk

mencegah gangguan terhadap operasional aplikasi yang

dapat berdampak pada user experience dan produktivitas

organisasi.

IV. KESIMPULAN DAN SARAN

Penelitian ini mengevaluasi performa ModSecurity versi

3 dengan OWASP Core Rule Set 4.19.0 menggunakan

framework pengujian GoTestWAF untuk mengidentifikasi

kemampuan deteksi serangan dan teknik bypass pada

aplikasi web. Hasil pengujian menunjukkan bahwa

konfigurasi default ModSecurity CRS 4.19.0 pada paranoia

level 1 belum memberikan perlindungan yang memadai

terhadap serangan modern, dengan hanya mampu

memblokir 45,44% dari 675 payload berbahaya yang

diujikan. Kategori serangan seperti NoSQL Injection, Path

Traversal, SSRF, dan file inclusion menunjukkan tingkat

bypass 100%, mengindikasikan gap signifikan dalam rule

coverage untuk teknologi dan teknik serangan kontemporer.

Sementara itu, hasil true-negative test menunjukkan tingkat

false positive sebesar 17,73%, yang meskipun masih dalam

batas wajar namun berpotensi mengganggu operasional

aplikasi pada implementasi produksi. Temuan ini

menegaskan bahwa optimalisasi konfigurasi melalui

peningkatan paranoia level, aktivasi optional rules,

pengembangan custom rules, dan implementasi whitelist

management merupakan langkah esensial untuk

meningkatkan efektivitas ModSecurity dalam menghadapi

landscape ancaman siber yang semakin kompleks.

Berdasarkan temuan penelitian, beberapa saran

direkomendasikan untuk pengembangan lebih lanjut.

Pertama, penelitian selanjutnya perlu melakukan pengujian

komparatif antara berbagai paranoia level (PL1-PL4) untuk

mengidentifikasi konfigurasi optimal yang

menyeimbangkan antara tingkat deteksi dan false positive

rate. Kedua, evaluasi performa ModSecurity pada

lingkungan produksi dengan beban traffic nyata diperlukan

untuk memvalidasi hasil pengujian dalam kondisi

operasional yang sesungguhnya. Ketiga, pengembangan

custom rule set yang dioptimalkan untuk kategori serangan

dengan tingkat bypass tinggi, khususnya NoSQL Injection

dan SSRF, dapat menjadi kontribusi signifikan bagi

komunitas keamanan siber. Keempat, integrasi ModSecurity

dengan teknologi machine learning atau artificial

intelligence berpotensi meningkatkan kemampuan deteksi

terhadap serangan zero-day dan teknik obfuscation yang

kompleks. Kelima, studi longitudinal yang mengevaluasi

efektivitas berbagai versi CRS terhadap evolusi teknik

serangan dari waktu ke waktu akan memberikan

pemahaman yang lebih komprehensif tentang dinamika

perlombaan antara mekanisme pertahanan dan teknik

penyerangan. Implementasi saran-saran tersebut diharapkan

dapat menghasilkan solusi WAF yang lebih robust dan

adaptif dalam melindungi aplikasi web dari ancaman siber

yang terus berkembang.

DAFTAR PUSTAKA

[1] - Robinson, M. Akbar, and M. A. Fadhly Ridha,

“SQL Injection and Cross Site Scripting Prevention

using OWASP ModSecurity Web Application

Firewall,” JOIV : International Journal on

Informatics Visualization, vol. 2, no. 4, pp. 286–292,

Aug. 2018, doi: 10.30630/joiv.2.4.107.
[2] S. E. Sadat, M. F. Naseri, and K. Salamzada,

“Identifying and Mitigating Web Application

Vulnerabilities: A Comparative Study of

Countermeasures and Tools,” International Journal

Software Engineering and Computer Science

(IJSECS), vol. 4, no. 3, pp. 1109–1127, Dec. 2024,

doi: 10.35870/ijsecs.v4i3.3138.

[3] K. D. D. Ayunda, A. Widjajarto, and A. Budiono,

“Implementation and Analysis ModSecurity on

Web-Based Application with OWASP Standards,”

JATISI (Jurnal Teknik Informatika dan Sistem

Informasi), vol. 8, no. 3, pp. 1638–1650, 2021.

[4] A. Reyes Narváez, M. Curipallo Martínez, E. Reyes

Narváez, F. Lara, E. P. Reyes Narváez, and H. Barba

Molina, “Evaluation Framework for False Positives

in Open-Source WAFs Based on OWASP CRS

Paranoia Levels: A Systematic Approach for

Comparative Measurement,” in The XXXIII

Conference on Electrical and Electronic

Engineering, Basel Switzerland: MDPI, Nov. 2025,

p. 1. doi: 10.3390/engproc2025115001.

[5] V. Babaey and A. Ravindran, “GenSQLi: A

Generative Artificial Intelligence Framework for

Automatically Securing Web Application Firewalls

Against Structured Query Language Injection

Attacks,” Future Internet, vol. 17, no. 1, p. 8, Dec.

2024, doi: 10.3390/fi17010008.

[6] Q. Wang et al., “Break the Wall from Bottom:

Automated Discovery of Protocol-Level Evasion

Vulnerabilities in Web Application Firewalls,” in

2024 IEEE Symposium on Security and Privacy

(SP), IEEE, May 2024, pp. 185–202. doi:

10.1109/SP54263.2024.00129.

[7] H. Humaira, A. Hadiana, and H. Ashaury, “Analisis

Ketahanan Web Application Firewall Terhadap

Serangan SQL Injection,” Jurnal Ilmiah Wahana

15

AJCSR [Academic Journal of Computer Science Research] e-ISSN: 2721 – 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

Pendidikan, vol. 10, no. 5, Jan. 2024, doi:

10.5281/zenodo.10526246.

[8] A. MK, K. S. S. Bala, S. S. T. Sonti, and J. KP, “An

empirical study on the evaluation and enhancement

of OWASP CRS (Core Rule Set) in ModSecurity,”

Comput Secur, vol. 160, p. 104714, Jan. 2026, doi:

10.1016/j.cose.2025.104714.

[9] M. Amouei, M. Rezvani, and M. Fateh, “RAT:

Reinforcement-Learning-Driven and Adaptive

Testing for Vulnerability Discovery in Web

Application Firewalls,” Dec. 2023, doi:

10.1109/TDSC.2021.3095417.

[10] K. Li, H. Yang, and W. Visser, “Evolutionary Multi-

Task Injection Testing on Web Application

Firewalls,” Jun. 2022.

[11] V. Babaey and A. Ravindran, “GenXSS: an AI-

Driven Framework for Automated Detection of XSS

Attacks in WAFs,” Apr. 2025.

[12] C. Wu, J. Chen, S. Zhu, W. Feng, R. Du, and Y.

Xiang, “WAFBOOSTER: Automatic Boosting of

WAF Security Against Mutated Malicious

Payloads,” Jan. 2025.

[13] S. A. Akhavani, B. Jabiyev, B. Kallus, C.

Topcuoglu, S. Bratus, and E. Kirda, “WAFFLED:

Exploiting Parsing Discrepancies to Bypass Web

Application Firewalls,” Oct. 2025.

[14] Z. Qu, X. Ling, T. Wang, X. Chen, S. Ji, and C. Wu,

“AdvSQLi: Generating Adversarial SQL Injections

Against Real-World WAF-as-a-Service,” IEEE

Transactions on Information Forensics and

Security, vol. 19, pp. 2623–2638, 2024, doi:

10.1109/TIFS.2024.3350911.

[15] G. Floris et al., “ModSec-AdvLearn: Countering

Adversarial SQL Injections with Robust Machine

Learning,” May 2025, doi:

10.1109/TIFS.2025.3583234.

[16] A. Shaheed and M. H. D. B. Kurdy, “Web

Application Firewall Using Machine Learning and

Features Engineering,” Security and

Communication Networks, vol. 2022, pp. 1–14, Jun.

2022, doi: 10.1155/2022/5280158.

[17] S. Toprak and A. Yavuz, “Web Application Firewall

Based on Anomaly Detection using Deep

Learning,” Acta Infologica, vol. 0, no. 0, pp. 0–0,

Oct. 2022, doi: 10.26650/acin.1039042.

[18] B. Dawadi, B. Adhikari, and D. Srivastava, “Deep

Learning Technique-Enabled Web Application

Firewall for the Detection of Web Attacks,”

Sensors, vol. 23, no. 4, p. 2073, Feb. 2023, doi:

10.3390/s23042073.

[19] N. Nelmiawati and K. Dealova, “Analysis of

Polyglot Obfuscation Techniques against

ModSecurity in Preventing Cross-Site Scripting

(XSS) and SQL Injection Attacks with Experimental

Method,” Jurnal Teknik Informatika (Jutif), vol. 6,

no. 4, pp. 2540–2549, Sep. 2025, doi:

10.52436/1.jutif.2025.6.4.5000.

[20] A. Reyes Narváez, M. Curipallo Martínez, E. Reyes

Narváez, F. Lara, E. P. Reyes Narváez, and H. Barba

Molina, “Evaluation Framework for False Positives

in Open-Source WAFs Based on OWASP CRS

Paranoia Levels: A Systematic Approach for

Comparative Measurement,” in The XXXIII

Conference on Electrical and Electronic

Engineering, Basel Switzerland: MDPI, Nov. 2025,

p. 1. doi: 10.3390/engproc2025115001.

[21] C. Scano et al., “ModSec-Learn: Boosting

ModSecurity with Machine Learning,” Jun. 2024,

doi: 10.1007/978-3-031-76459-2_3.

