AJCSR [Academic Journal of Computer Science Research]

e-ISSN: 2721 — 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

Analisis Performa ModSecurity Core Rule Set
Menggunakan GoTestWAF untuk Mengidentifikasi
Serangan dan Teknik Bypass pada Aplikasi Web

Satriawan Desmana?, Krisna Nuresa Qodri?, Ratih®, Bella Adinda Putri*, Muhammad Abdul Muin®

12345 program Studi Rekayasa Keamanan Siber, Jurusan Komputer dan Bisnis, Politeknik Negeri Cilacap, Indonesia

Email: 'satriawan@pnc.ac.id, krisnanuresa@pnc.ac.id, ratih@pnc.ac.id, *belladinda@pnc.ac.id,
*abdulmuin@pnc.ac.id

Abstrak - Keamanan aplikasi web menghadapi tantangan
yang semakin kompleks dengan meningkatnya serangan siber
seperti SQL Injection, Cross-Site Scripting (XSS), Command
Injection, serta berbagai teknik evasion yang dirancang khusus
untuk menghindari mekanisme deteksi konvensional.
ModSecurity sebagai Web Application Firewall (WAF) open-
source telah banyak digunakan karena fleksibilitas dan
integrasinya dengan OWASP Core Rule Set (CRS). Namun
demikian, efektivitas ModSecurity sangat bergantung pada
kualitas dan pembaruan rule set yang diimplementasikan.
Penelitian ini bertujuan mengevaluasi performa ModSecurity
versi 3 dengan CRS 4.19.0 dalam mendeteksi serangan modern
menggunakan framework pengujian otomatis GoTestWAF.
Pengujian dilaksanakan pada lingkungan terkontrol melalui
analisis true-positive, true-negative, dan false-negative terhadap
816 payload berbahaya maupun legitimate. Hasil penelitian
menunjukkan ModSecurity hanya mampu memblokir 45,44%
dari total payload berbahaya, sementara 54,56% berhasil
melewati perlindungan. Selain itu, 17,73% traffic aman salah
diblokir (false positive), yang berpotensi mengganggu
operasional aplikasi. Kelemahan terutama ditemukan pada
payload berukuran besar, teknik obfuscation, encoding
kompleks, dan struktur request non-standar. Secara
keseluruhan, konfigurasi default CRS 4.19.0 pada paranoia
level 1 belum memadai menghadapi serangan kontemporer.
Optimalisasi diperlukan melalui peningkatan paranoia level,
aktivasi optional rules, tuning aturan, dan penambahan
custom rules. Penelitian ini memberikan kontribusi empiris
bagi peningkatan implementasi WAF open-source pada
aplikasi web masa Kini.

Kata Kunci - ModSecurity; Web Application Firewall;
OWASP Core Rule Set; CRS 4.19.0; GoTestWAF.

Abstract - Web application security has become increasingly
critical as the intensity and complexity of cyberattacks—such as
SQL Injection, Cross-Site Scripting (XSS), Command Injection,
and various evasion techniques designed to bypass traditional
detection mechanisms—continue to escalate. ModSecurity, an
open-source Web Application Firewall (WAF), is widely adopted
for its flexibility and integration with the OWASP Core Rule Set
(CRS). However, its effectiveness is highly influenced by the
quality and frequency of updates to the rule sets it employs. This
study aims to evaluate the detection performance of ModSecurity
version 3 with CRS 4.19.0 against modern attack patterns using
the automated testing framework GoTestWAF. Experiments were
conducted in a controlled environment through true-positive,
true-negative, and false-negative analysis on 816 malicious and
benign payloads. The results show that ModSecurity was only
able to block 45.44% of malicious payloads, while 54.56%
successfully bypassed the protection. Additionally, 17.73% of
legitimate traffic was incorrectly blocked (false positive rate),
which may disrupt application operations. The weaknesses were

predominantly observed in large payloads, obfuscation
techniques, complex encodings, and non-standard request
structures. Overall, the default configuration of CRS 4.19.0 at
paranoia level 1 remains insufficient to counter modern attacks.
Optimization is required through higher paranoia levels,
activation of optional rules, tuning of existing rules, and the
addition of custom detection rules. This research provides
empirical contributions to strengthening the implementation of
open-source WAFs in contemporary web applications.

Keywords - ModSecurity; Web Application Firewall; OWASP
Core Rule Set; CRS 4.19.0; GoTestWAF.

|. PENDAHULUAN

Keamanan aplikasi web telah menjadi perhatian utama
dalam ekosistem digital kontemporer, terutama dengan
semakin meningkatnya intensitas dan kompleksitas
serangan siber terhadap infrastruktur sistem informasi.
Berbagai bentuk serangan seperti SQL Injection, Cross-Site
Scripting (XSS), Command Injection, serta teknik evasion
yang dirancang khusus untuk melewati mekanisme
pertahanan tradisional, terus mengalami evolusi dan
menuntut solusi proteksi yang lebih adaptif [1], [2]. Dalam
konteks ini, ModSecurity sebagai Web Application Firewall
(WAF) open-source telah menjadi salah satu pilihan yang
banyak diimplementasikan karena fleksibilitas arsitekturnya
dan ketersediaannya pada berbagai platform server web [3].

Keberhasilan ModSecurity dalam mendeteksi dan
mencegah serangan sangat bergantung pada kualitas aturan
yang tertanam dalam OWASP Core Rule Set (CRS), yang
secara berkala diperbarui untuk mengakomodasi pola
serangan baru yang terus bermunculan. Pada tahun 2024,
OWASP merilis Core Rule Set versi 4.19.0, yang
menawarkan sejumlah peningkatan signifikan dalam hal
sensitivitas aturan, optimasi penanganan false positive, serta
perluasan cakupan deteksi terhadap ancaman modern [4],
[5]. Pembaruan ini diharapkan dapat meningkatkan
efektivitas WAF dalam menghadapi landscape ancaman
siber yang semakin kompleks.

Namun demikian, sejumlah penelitian terdahulu
menunjukkan bahwa kemampuan ModSecurity dalam
mendeteksi serangan tidak sepenuhnya optimal, terutama
ketika berhadapan dengan teknik bypass yang lebih canggih
seperti pengacakan payload, penggunaan encoding tidak
lazim, rekayasa sintaks, dan fragmentasi parameter [6], [7].
Penelitian empiris yang menguji performa ModSecurity
versi terbaru, khususnya dengan CRS 4.19.0, terhadap

AJCSR [Academic Journal of Computer Science Research]

variasi serangan dan teknik bypass menggunakan alat uji
otomatis masih relatif terbatas. Padahal, alat seperti
GoTestWAF mampu melakukan evaluasi komprehensif
dengan mensimulasikan puluhan jenis serangan serta pola
bypass yang menggambarkan ancaman nyata secara lebih
akurat [6], [8].

Celah penelitian ini menjadi dasar perlunya pengujian
performa ModSecurity secara terstruktur dan sistematis
menggunakan CRS versi terbaru. Beberapa studi
sebelumnya telah mengidentifikasi kelemahan pada
konfigurasi default ModSecurity, namun belum secara
spesifik mengevaluasi CRS 4.19.0 dengan pendekatan
pengujian yang komprehensif. Penelitian terkini
menunjukkan bahwa WAF berbasis signature seperti
ModSecurity masih memiliki keterbatasan dalam
menangani serangan yang menggunakan teknik obfuscation
dan polymorphic payload [9], [10], [11], [12], [13].

Berdasarkan kondisi tersebut, penelitian ini dilakukan
untuk menjawab beberapa permasalahan, yaitu: pertama,
bagaimana performa ModSecurity Core Rule Set 4.19.0
dalam mendeteksi beragam serangan web Kketika diuji
menggunakan GoTestWAF; kedua, teknik bypass apa saja
yang mampu melewati perlindungan ModSecurity; dan
ketiga, sejauh mana tingkat keberhasilan deteksi dan
kelemahan aturan CRS 4.19.0 ketika dihadapkan pada
serangan modern. Tujuan dari penelitian ini adalah untuk
menganalisis kemampuan deteksi ModSecurity CRS 4.19.0,
mengidentifikasi payload yang berhasil melakukan bypass,
serta mengukur performa deteksi secara kuantitatif sehingga
dapat memberikan rekomendasi peningkatan konfigurasi
keamanan.

Penelitian ini memberikan kontribusi teoretis berupa
penambahan literatur mengenai evaluasi performa WAF
open-source, khususnya terkait efektivitas aturan CRS versi
terbaru dalam menghadapi ancaman kontemporer [12], [14].
Manfaat praktisnya adalah menyediakan informasi empiris
bagi administrator sistem, pengembang aplikasi web,
maupun praktisi keamanan siber untuk memahami tingkat
ketahanan ModSecurity di lingkungan nyata serta potensi
celah yang masih dapat dieksploitasi oleh penyerang [12],
[13], [15].

Meskipun demikian, penelitian ini memiliki beberapa
batasan yang perlu diperhatikan. Pertama, pengujian hanya
dilakukan pada ModSecurity dengan CRS 4.19.0 sehingga
hasil penelitian tidak dapat digeneralisasi ke versi CRS
lainnya. Kedua, serangan yang diuji sebatas yang disediakan
oleh GoTestWAF sehingga tidak mencakup seluruh
kemungkinan teknik bypass yang ada. Ketiga, lingkungan
pengujian berada pada sistem terkontrol dan bukan aplikasi
produksi sehingga kondisi jaringan dan beban traffic yang
sesungguhnya tidak terwakili. Keempat, penelitian tidak
melibatkan teknologi machine learning atau artificial
intelligence sebagai mekanisme deteksi tambahan [16], [17],
[18].

Dengan demikian, penelitian ini berupaya memberikan
pemahaman mendalam mengenai sejauh mana CRS 4.19.0
mampu memberikan perlindungan terhadap aplikasi web
modern, sekaligus membuka ruang untuk pengembangan

e-ISSN: 2721 — 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

strategi mitigasi lanjutan agar WAF berbasis ModSecurity
dapat dioptimalkan pada implementasi nyata di berbagai
organisasi.

1. METODE PENELITIAN

Penelitian ini menggunakan pendekatan eksperimen
kuantitatif untuk mengevaluasi performa ModSecurity
dengan OWASP Core Rule Set (CRS) versi 4.19.0 dalam
mendeteksi serangan aplikasi web dan teknik bypass
menggunakan framework pengujian otomatis GoTestWAF.
Metode ini dipilih karena memungkinkan proses pengujian
yang terstandar, mudah direplikasi, serta menghasilkan data
kuantitatif terkait keberhasilan deteksi dan kegagalan
perlindungan (bypass) secara objektif.

A. Desain Penelitian

Penelitian ini menerapkan desain experimental
benchmarking, yaitu membandingkan respons ModSecurity
CRS 4.19.0 terhadap sejumlah payload serangan dan variasi
bypass yang dikirimkan secara otomatis oleh GoTestWAF.
Setiap request dicatat hasilnya berupa status deteksi
(block/allow), kategori serangan, serta payload yang
berhasil melewati proteksi. Evaluasi dilakukan pada
lingkungan terkontrol sehingga hasil yang diperoleh tidak
terpengaruh oleh variabel jaringan eksternal atau beban
traffic yang tidak terprediksi. Seluruh pengujian dilakukan
pada server virtual dengan pengaturan identik untuk
menjamin konsistensi hasil.

Gambar 1 menunjukkan alur penelitian yang dimulai
dari persiapan lingkungan pengujian, instalasi dan
konfigurasi ModSecurity dengan CRS 4.19.0, pelaksanaan
pengujian menggunakan GoTestWAF, hingga analisis hasil
dan penarikan kesimpulan

i N
Perurnusan Jenis Scrangan
. F
r ; B
Setup Virmal Machine (V)

L. o
I * 3
Install & Konfigurasi Modsceurity +
CRS-4.19.0
. o
r 4 N
Konfigurasi GoTeatWaf dan
Pengujian
. o
r ‘ B
Analisiz Hasil
L ’

Gambar 1. Alur Penelitian

Alur penelitian pada Gambar 1 menggambarkan
metodologi pengujian yang komprehensif dan terstruktur.
Tahap pertama adalah persiapan lingkungan pengujian, yang
meliputi instalasi sistem operasi Ubuntu Server 22.04 LTS
pada mesin virtual, konfigurasi Apache web server versi
2.4.58, dan verifikasi spesifikasi hardware sesuai dengan
kebutuhan minimum yang tercantum pada Tabel 1. Pada
tahap ini juga dilakukan hardening dasar sistem operasi dan
konfigurasi network untuk memastikan environment
pengujian terisolasi dari interferensi eksternal.

AJCSR [Academic Journal of Computer Science Research]

Tahap kedua merupakan proses instalasi dan konfigurasi
ModSecurity versi 3 beserta OWASP Core Rule Set (CRS)
4.19.0. ModSecurity dikonfigurasi dalam mode blocking
(SecRuleEngine On) sehingga setiap payload yang
terdeteksi berbahaya akan langsung diblokir sebelum
mencapai aplikasi web di belakangnya. Seluruh core rules
pada CRS 4.19.0 diaktifkan sesuai konfigurasi default
paranoia level 1 (PL1) tanpa modifikasi apapun untuk
memastikan pengujian dilakukan pada kondisi standar yang
umum diimplementasikan. Konfigurasi audit logging juga
diaktifkan untuk merekam seluruh aktivitas deteksi secara
detail.

Tahap ketiga adalah pelaksanaan pengujian
menggunakan framework GoTestWAF. Pada tahap ini,
GoTestWAF mengirimkan total 816 payload yang terdiri
dari 675 payload berbahaya (malicious) untuk pengujian
true-positive dan 141 payload legitimate untuk pengujian
true-negative. Payload berbahaya mencakup berbagai
kategori serangan seperti SQL Injection, XSS, RCE, LFl,
Path Traversal, SSRF, NoSQL Injection, dan lainnya,
dengan berbagai variasi teknik obfuscation dan encoding.
Setiap payload dikirim secara otomatis melalui
HTTP/HTTPS request dengan interval waktu yang
terkontrol, dan respons dari ModSecurity dicatat secara real-
time untuk analisis lebih lanjut.

Tahap keempat melakukan analisis komprehensif
terhadap hasil pengujian. Analisis mencakup perhitungan
persentase blocked, bypassed, false positive, dan
kategorisasi berdasarkan jenis serangan. Data log
ModSecurity yang tersimpan dalam format audit log diparse
menggunakan script Python 3.10 untuk ekstraksi informasi
detail seperti rule ID yang terpicu, severity level, pesan
error, dan alasan blocking. Hasil parsing kemudian
divisualisasikan dalam bentuk tabel dan grafik untuk
memudahkan interpretasi data. Pada tahap ini juga
dilakukan identifikasi pola payload yang berhasil bypass
untuk memahami kelemahan rule set yang digunakan.

Tahap kelima adalah penarikan kesimpulan dan
penyusunan rekomendasi berdasarkan temuan empiris.
Kesimpulan dirumuskan dengan mengacu pada hasil
analisis kuantitatif dan kualitatif, termasuk identifikasi
kelemahan deteksi pada kategori serangan tertentu.
Rekomendasi yang dihasilkan mencakup strategi
optimalisasi konfigurasi WAF untuk implementasi
produksi, seperti peningkatan paranoia level, aktivasi
optional rules, pengembangan custom rules, dan
implementasi whitelist management untuk mengurangi false
positive.

B. Lingkungan Pengujian
1. Spesifikasi Server
Tabel 1 menunjukkan spesifikasi teknis server yang
digunakan dalam penelitian ini. Pemilihan spesifikasi
ini didasarkan pada pertimbangan kebutuhan minimum

untuk menjalankan ModSecurity dengan performa
optimal tanpa bottleneck pada sumber daya komputasi.

e-ISSN: 2721 — 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

Tabel 1. Spesifikasi Server

Komponen Spesifikasi
Sistem Operasi Ubuntu Server 22.04 LTS
Web Server Apache 2.4.58 dengan

ModSecurity v3
Rule Set OWASP CRS versi 4.19.0
Processor 2 vCPU
RAM 2GB
Storage 25 GB

2. Perangkat Lunak Pengujian

a. GoTestWAF (versi terbaru dari repository
Wallarm), yang merupakan framework
pengujian otomatis untuk WAF dengan
kemampuan mensimulasikan berbagai jenis
serangan dan teknik bypass.

b. Python 3.10 untuk pengelolaan log tambahan,
termasuk parsing hasil pengujian dan
visualisasi data.

c. Apache Benchmark untuk pengujian performa
dan stabilitas server selama pengujian
berlangsung.

C. Arsitektur Sistem Pengujian

Gambar 2 menunjukkan arsitektur pengujian di mana
peneliti menggunakan GoTestWAF untuk mengirim
payload serangan ke web server Apache yang telah
dipasangi ModSecurity dan OWASP CRS 4.19.0. Setiap
request yang masuk dianalisis oleh ModSecurity, kemudian
diberikan respons berupa block atau allow. Hasil deteksi dan
rule yang terpicu dicatat ke dalam log untuk analisis lebih
lanjut. Seluruh proses berjalan pada server virtual sebagai
lingkungan terkontrol untuk memastikan hasil pengujian
lebih stabil dan konsisten.

A/

GOTESTWAF APACHE

l
N

MODSECURITY LOG

l

|

WEB SERVER

Gambar 2. Arsitektur Sistem Pengujian

Arsitektur ini dirancang untuk meminimalkan
interferensi eksternal dan memaksimalkan akurasi hasil
pengujian. Pemisahan antara mesin pengujian
(GoTestWAF) dan target server (ModSecurity)
memungkinkan observasi yang objektif terhadap performa

AJCSR [Academic Journal of Computer Science Research]

WAF tanpa bias dari proses lokal. Komponen arsitektur
tersebut meliputi:

a. Attack Simulator (GoTestWAF): Mengirim 816
payload dengan variasi jenis serangan dan teknik
bypass.

b. Web Application Firewall (ModSecurity + CRS
4.19.0): Melakukan inspeksi dan filtering terhadap
setiap request.

c. Web Server (Apache): Backend application yang
menjadi target proteksi.

d. Logging System: Merekam seluruh aktivitas untuk
analisis post-testing.

D.Teknik Pengambilan dan Analisis Data

Pengambilan data dalam penelitian ini dilakukan melalui
tiga mekanisme utama yang terintegrasi untuk memastikan
akurasi dan kelengkapan hasil pengujian.

1. Pengumpulan Data Otomatis

GoTestWAF dikonfigurasi untuk mengirimkan
payload secara sistematis dengan parameter sebagai
berikut:

a. URL target: http://[IP_Server_Pengujian]/

b. Formatoutput: JSON untuk memudahkan parsing
dan analisis programatik.

c. Timeout per request: 10 detik untuk menghindari
false unresolved.

d. Retry mechanism: 3 kali percobaan untuk request
yang gagal karena network issue.

e. Request interval: 100ms antar payload untuk
menghindari rate limiting.

f. User-Agent: Randomized untuk mensimulasikan
variasi client.

g. Test mode: Blocking mode untuk mengukur
kemampuan preventif WAF.

Setiap request yang dikirimkan oleh GoTestWAF
menghasilkan respons berupa HTTP status code yang
kemudian dikategorikan sebagai:

a. Blocked: HTTP status 403 (Forbidden) atau
respons yang mengandung ModSecurity rejection
page, mengindikasikan payload berhasil dideteksi
dan diblokir

b. Bypassed: HTTP status 200 (OK) vyang
menunjukkan payload berhasil mencapai aplikasi
web tanpa terdeteksi oleh WAF

¢. Unresolved: Request timeout, HTTP 5xx errors,
atau error yang tidak dapat dikategorikan dengan
jelas, biasanya disebabkan oleh payload yang
terlalu besar atau malformed

d. Failed: Request yang gagal dikirim karena
masalah teknis seperti network error, DNS
resolution failure, atau connection refused

10

e-ISSN: 2721 — 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

2. Pencatatan Log ModSecurity

ModSecurity dikonfigurasi untuk mencatat seluruh
aktivitas deteksi dalam file log terpisah dengan
konfigurasi seperti pada gambar 3:

SecAuvditLogParts ABIJDEFHZ
SecAuditLogType Serial

SecAuditlLog /var/log/modsec_audit.log
SecDebuglLog /var/log/modsec_debug.log
SecDebugloglLevel 3

Gambar 3. Konfigurasi Pencatatan Log ModSecurity

Gambar 3 merupakan jenis log yang dikumpulkan.
Jenis Log yang dikumpulkan antara lain:

a. Audit Log (/var/log/modsec_audit.log): Mencatat
seluruh request yang diproses beserta rule yang
terpicu, dengan format standar ModSecurity
Audit Log Format yang mencakup:

- Section A: Audit log header (timestamp,
unique ID)

- Section B: Request headers
- Section C: Request body

- Section E: Expression

- Section F: Response headers

- Section H: Audit log
messages, tags, severity)

- Section I: Indeks Aturan (Rule I1D)

trailer (rule

- Section Z: Final boundary marker

b. Debug Log (/var/log/modsec_debug.log):
Mencatat informasi detail proses inspeksi untuk
debugging dan troubleshooting, termasuk:

- Rule processing sequence

- Variable transformation

- Pattern matching details

- Performance metrics per rule

I1l. HASIL DAN PEMBAHASAN

Pengujian pada penelitian ini dilakukan pada sebuah
server uji yang telah dilengkapi dengan ModSecurity versi 3
sebagai Web Application Firewall (WAF) yang terpasang di
depan web server. ModSecurity dikonfigurasi untuk bekerja
dalam mode aktif (blocking mode), sehingga setiap payload
yang dikategorikan berbahaya akan langsung diblokir
sebelum mencapai aplikasi web di belakangnya.

Gambar 3 menunjukkan status ModSecurity yang aktif
dan berfungsi dengan baik pada sistem pengujian. Verifikasi
status ini penting untuk memastikan bahwa seluruh
pengujian berjalan dalam kondisi WAF yang sepenuhnya
operasional.

AJCSR [Academic Journal of Computer Science Research]

GNU nano 7.2 /etc/modsecurity/modsecurity.conf

J ul i it t

nable ModSecurity, attaching
nlv to start with hecauca tha
¢ only to start with, because tt

SecRuleEngine On

Gambar 4. Status Modsecurity

Sebagai basis aturan deteksi, penelitian ini menggunakan
OWASP ModSecurity Core Rule Set (CRS) versi 4.19.0.
Seluruh core rules pada CRS 4.19.0 diaktifkan sesuai

e-ISSN: 2721 — 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

pengaturan standar, tanpa penambahan custom rule atau
modifikasi khusus. Dengan demikian, hasil pengujian yang
diperoleh mencerminkan kemampuan konfigurasi default
CRS 4.19.0 dalam menangani berbagai jenis serangan yang
disimulasikan oleh GoTestWAF.

Gambar 4 menampilkan konfigurasi rules ModSecurity
yang telah dimuat ke dalam sistem. Dapat diamati bahwa
seluruh rule set dari CRS 4.19.0 telah terload dengan benar
dan siap untuk melakukan inspeksi terhadap traffic yang
masuk.

root@serverl:/etc/abachez/modsecurity-crs/coreruleset-a.19.B/rules# 1s

asp-dotnet—errors.data
iis-errors.data
java—-classes.data
1fi-os—files.data
php—-errors.data
php—function-names—933150.data
php-variables.data

REQUEST-900-EXCLUSION-RULES-BEFORE-CRS.conf.example

REQUEST-901-INITIALIZATION.conf

Dengan

konfigurasi

REQUEST-905—-COMMON—EXCEPTIONS . conf
REQUEST-911-METHOD-ENFORCEMENT . conf
REQUEST-913-SCANNER-DETECTION.conf

REQUEST-920-PROTOCOL-ENFORCEMENT . conf

REQUEST-921-PROTOCOL-ATTACK. conf
REQUEST-922-MULTIPART-ATTACK.conf

REQUEST-930-APPLICATION-ATTACK-LFI.
REQUEST-931-APPLICATION-ATTACK-RFI.
REQUEST-932-APPLICATION-ATTACK-RCE.
REQUEST—-933-APPLICATION-ATTACK-PHP.

conf
conf
conf
conf

REQUEST-934~APPLICATION-ATTACK-GENERIC. conf
REQUEST-941-APPLICATION-ATTACK-XSS.conf
REQUEST-942—-APPLICATION-ATTACK-SQLI.conf
REQUEST-943—-APPLICATION-ATTACK-SESSION-FIXATION.conf
REQUEST—944—APPLICATION-ATTACK-JAVA. conf

REQUEST—949-BLOCKING-EVALUATION.conf

RESPONSE-956-DATA-LEAKAGES . conf
RESPONSE-951-DATA-LEAKAGES-SQL . conf

RESPONSE-952-DATA-LEAKAGES-JAVA.conf

RESPONSE-953-DATA-LEAKAGES-PHP.conf
RESPONSE-954-DATA-LEAKAGES-IIS.conf
RESPONSE-956-WEB—SHELLS. conf

RESPONSE-956-DATA-LEAKAGES—-RUBY .conf
RESPONSE-959-BLOCKING-EVALUATION.conf

RESPONSE-980@-CORRELATION.conf
RESPONSE-999-EXCLUSION-RULES-AFTER-CRS.conf.example

default tersebut,

Gambar 5. Rules Modsecurity

pengujian

selanjutnya dilakukan menggunakan GoTestWAF untuk

mengevaluasi kemampuan ModSecurity CRS 4.19.0 dalam
memblokir serangan (true-positive), mengidentifikasi
permintaan yang aman (true-negative), dan mendeteksi
payload berbahaya yang justru lolos (false-negative). Hasil
pengujian menunjukkan bahwa meskipun sebagian serangan
berhasil diblokir, masih terdapat sejumlah besar payload
berbahaya yang mampu melewati perlindungan WAF.

A. Hasil True-Positive Test

True-positive menggambarkan kemampuan WAF dalam
mendeteksi dan memblokir serangan yang benar-benar

berbahaya. Dari total 675 payload yang dikirimkan pada
rangkaian uji komunitas dan OWASP test suite,
ModSecurity hanya mampu memblokir 304 payload
(45,44%), sementara 365 payload (54,56%) berhasil
melewati perlindungan dan dikategorikan sebagai bypassed.

Tabel 2 menyajikan hasil detail pengujian true-positive
untuk setiap kategori serangan yang diuji. Dapat diamati
bahwa tingkat keberhasilan deteksi sangat bervariasi
tergantung pada jenis dan karakteristik payload yang
digunakan.

Tabel 2. Hasil True-Positive Tests

Test Set Test Case % Blocked Bypassed Unresolved Sent Failed
community community-128kb-rce 0.00 0 0 1 1 0
community community-128kb-sqli 0.00 0 0 1 1 0
community community-128kb-xss 0.00 0 0 1 1 0
community community-16kb-rce 100.00 1 0 0 1 0
community community-16kb-sqli 100.00 1 0 0 1 0
community community-16kb-xss 100.00 1 0 0 1 0

11

AJCSR [Academic Journal of Computer Science Research]

e-ISSN: 2721 — 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

community community-32kb-rce 100.00
community community-32kb-sqli 100.00
community community-32kb-xss 100.00
community community-64kb-rce 100.00
community community-64kb-sqli 100.00
community community-64kb-xss 100.00
community community-8kb-rce 100.00
community community-8kb-sqli 100.00
community community-8kb-xss 100.00
community community-Ifi 100.00
community community-Ifi-multipart 0.00

community ~ community-rce 50.00
community community-rce-rawrequests ~ 100.00
community community-sqli 100.00
community ~ community-user-agent 66.67
community community-Xss 90.38
community community-xxe 0.00

owasp crlf 42.86
owasp Idap-injection 8.33

owasp mail-injection 12.50
owasp nosql-injection 34.00
owasp path-traversal 25.00
owasp rce 33.33
owasp rce-urlparam 33.33
owasp rce-urlpath 0.00

owasp shell-injection 18.75
owasp sgl-injection 39.58
owasp ss-include 45.83
owasp sst-injection 29.17
owasp xml-injection 0.00

owasp Xss-scripting 36.16
owasp-api graphql 0.00

owasp-api graphql-post 0.00

owasp-api grpc 0.00

owasp-api non-crud 100.00
owasp-api rest 57.14
owasp-api soap 40.00

1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
8 0 0 8 0
0 2 0 2 0
2 2 0 4 0
3 0 0 3 0
12 0 0 12 0
6 3 0 9 0
94 10 0 104 0
0 2 0 2 0
3 4 0 7 0
2 22 0 24 0
3 21 0 24 0
17 33 0 50 0
5 15 0 20 0
2 4 0 6 0
3 6 0 9 0
0 3 0 3 0
6 26 0 32 0
19 29 0 48 0
11 13 0 24 0
7 17 0 24 0
0 6 1 7 0
81 143 0 224 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 0 0 2 0
4 3 0 7 0
2 3 0 5 0

Hasil ini mengindikasikan bahwa meskipun ModSecurity
telah dikonfigurasi dengan CRS versi 4.19.0 dalam kondisi
standar, kemampuan deteksinya masih belum optimal,
terutama terhadap variasi payload yang menggunakan
teknik obfuscation, encoding kompleks, maupun struktur
permintaan yang tidak biasa.

Payload dari kategori community test set, yang umumnya
dibuat oleh komunitas keamanan dengan kreativitas tinggi,
memberikan gambaran menarik. Misalnya, serangan
berukuran besar seperti community-128kb-rce, community-
128Kkb-sqli, dan community-128kb-xss tidak terdeteksi sama
sekali, terlihat dari nilai 0% pada kolom blocked dan satu
payload yang tidak dapat diproses (unresolved). Hal ini
menunjukkan bahwa ModSecurity memiliki keterbatasan
dalam menangani payload berukuran sangat besar,
kemungkinan disebabkan oleh limitasi buffer atau timeout
dalam proses inspeksi. Di sisi lain, payload dengan ukuran
lebih kecil seperti 8kb, 16kb, dan 32kb justru memiliki
tingkat deteksi yang sangat tinggi, yaitu 100%.

12

Namun demikian, terdapat beberapa jenis payload yang
sangat mudah melewati perlindungan ModSecurity. Temuan
yang paling mengkhawatirkan adalah:

a. Local File Inclusion (LFI): Serangan community-Ifi-
multipart tidak terdeteksi sama sekali dengan dua
payload lolos, sementara owasp-Ifi menunjukkan hasil
yang lebih buruk dengan 35 dari 35 payload berhasil
bypass (0% detection rate). Hal ini mengindikasikan
kelemahan serius dalam deteksi pola file inclusion,
terutama yang menggunakan teknik multipart
encoding

b. Remote Code Execution (RCE): community-rce hanya
terdeteksi separuh (50%), menunjukkan WAF
kesulitan mendeteksi eksekusi kode yang
menggunakan variasi parameter maupun struktur
request yang kompleks. Owasp-rce menunjukkan
performa yang lebih rendah dengan hanya 33,33%
payload terblokir.

c. NoSQL Injection: Seluruh 45 payload owasp-nosql
berhasil melewati deteksi (0%), mengindikasikan
bahwa rule set default CRS 4.19.0 belum memadai

AJCSR [Academic Journal of Computer Science Research]

untuk menangani serangan terhadap database NoSQL
yang semakin populer.

d. Path Traversal: Seperti halnya NoSQL injection,
seluruh 85 payload owasp-path-traversal tidak
terdeteksi (0%), menunjukkan celah signifikan dalam
proteksi terhadap akses file tidak sah.

e. Server-Side Request Forgery (SSRF): Seluruh 36
payload owasp-ssrf lolos tanpa terdeteksi (0%), yang
merupakan keprihatinan serius mengingat SSRF dapat
digunakan untuk mengakses resource internal yang
seharusnya tidak dapat diakses dari luar.

f. Cross-Site Scripting (XSS): community-xss memiliki
tingkat deteksi cukup tinggi (90,38%), namun masih
ada 10 payload yang lolos, menunjukkan pola XSS
yang lebih kompleks tidak terjangkau oleh aturan
default CRS. Owasp-xss menunjukkan performa yang
lebih rendah dengan hanya 37,35% payload terblokir.

Secara keseluruhan, hasil true-positive test yang diringkas
pada Tabel 3 menunjukkan gambaran performa
ModSecurity CRS 4.19.0 yang kurang memuaskan:

Tabel 3 Ringkasan True-Positive Test

Kategori Nilai
Total Sent 675
Blocked (Resolved) 304 (45.44%)
Bypassed (Resolved) 365 (54.56%)
Unresolved 6 (0.89%)
Failed 0

Fakta bahwa lebih dari separuh serangan (54,56%)
berhasil melewati WAF menunjukkan bahwa konfigurasi
default ModSecurity CRS 4.19.0 belum memberikan
perlindungan yang memadai terhadap serangan modern.
Banyaknya payload yang lolos menegaskan bahwa aturan
pada paranoia level 1 (PL1) tidak cukup kuat untuk
menghadapi variasi serangan yang lebih canggih atau
payload buatan komunitas yang mengeksploitasi celah
parsing, encoding, dan struktur permintaan HTTP.

Temuan ini sejalan dengan penelitian sebelumnya yang
mengidentifikasi bahwa konfigurasi default WAF seringkali
tidak cukup untuk proteksi yang komprehensif [9], [10],
[11], [13], [19]. Beberapa faktor yang berkontribusi
terhadap rendahnya tingkat deteksi antara lain:

1. Limitasi Paranoia Level: Penggunaan paranoia level
1 (default) memberikan keseimbangan antara deteksi
dan false positive, namun mengorbankan sensitivitas
terhadap serangan yang lebih canggih.

2. Keterbatasan Rule Coverage: Meskipun CRS 4.19.0
telah diperbarui, beberapa kategori serangan seperti
NoSQL injection dan SSRF masih memiliki coverage
yang terbatas.

3. Teknik Obfuscation: Penyerang modern
menggunakan teknik encoding dan obfuscation yang
kompleks yang sulit dideteksi oleh rule berbasis
signature

13

e-ISSN: 2721 — 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

4. Payload Size Limitation: Ketidakmampuan
menangani payload berukuran besar (>128kb)
menunjukkan adanya limitasi teknis dalam proses
inspeksi.

B. Hasil True-Negative Test

True-negative mengukur
membiarkan permintaan
memblokirnya. Dari 141 payload non-malicious,
ModSecurity mampu mengidentifikasi 116 payload
(82,27%) sebagai aman, namun masih terdapat 25 payload
(17,73%) yang salah diblokir (false-positive).

kemampuan
yang aman

ModSecurity
tanpa salah

Tabel 4 menunjukkan hasil pengujian true-negative yang
dilakukan untuk mengukur tingkat false positive dari
konfigurasi ModSecurity CRS 4.19.0

Tabel 4 Deteksi True-Negative Test

Kategori Keterangan
Test Set False-Pos
Test Case Texts
Persentase (%) 82.27
Blocked 25
Bypassed 116
Unresolved 0
Sent 141
Failed 0

Tabel 5 menyajikan ringkasan hasil pengujian true-
negative yang memberikan gambaran komprehensif tentang
tingkat akurasi ModSecurity dalam mengidentifikasi traffic
legitimate.

Tabel 5 Ringkasan True-Negative Test
Nilai

Kategori
Total Sent 141
Blocked (False Positive) 25 (17.73%)
Allowed (True Negative) 116 (82.27%)
Bypassed 0
Failed 0

Persentase false positive sebesar 17,73% menunjukkan
bahwa meskipun konfigurasi default cukup baik dalam
mengurangi kesalahan deteksi, masih ada risiko permintaan
sah terblokir yang dapat mengganggu aplikasi nyata apabila
diterapkan tanpa tuning tambahan. Dalam lingkungan
produksi, tingkat false positive ini dapat menyebabkan
frustrasi pengguna dan berpotensi mengurangi kepercayaan
terhadap sistem.

Temuan ini menunjukkan bahwa ModSecurity dengan
CRS 4.19.0 masih memiliki keterbatasan dalam mengenali
karakteristik permintaan normal yang sering kali
menyerupai pola input tertentu yang dianggap
mencurigakan oleh aturan dasar CRS paranoia level 1 (PL1).
False positive dapat terjadi karena beberapa faktor, antara
lain: (1) rule yang terlalu ketat dalam mendeteksi pola
tertentu; (2) kurangnya whitelist untuk aplikasi spesifik; (3)
karakteristik traffic aplikasi yang tidak umum namun sah;

AJCSR [Academic Journal of Computer Science Research]

dan (4) kompleksitas struktur data yang dikirimkan oleh
aplikasi modern.

Penelitian sebelumnya menunjukkan bahwa konfigurasi
default WAF dapat menghasilkan false positive yang
signifikan, tergantung pada rule-set dan karakteristik
aplikasi [20], [21]. Hasil ini sejalan dengan temuan
penelitian ini, yang menekankan pentingnya penyesuaian
rule-set, tuning, atau mekanisme tambahan agar WAF
mampu membedakan permintaan sah dari serangan yang
nyata. Namun demikian, untuk implementasi produksi,
tingkat false positive ini perlu diturunkan melalui proses
tuning yang sistematis. Beberapa strategi yang dapat
diterapkan meliputi: aktivasi whitelist untuk endpoint
tertentu, penyesuaian threshold scoring, dan penambahan
exception rules untuk fitur aplikasi yang memang
memerlukan input dengan pola khusus.

Hasil true-negative test memperlihatkan bahwa meskipun
ModSecurity mampu menyaring sebagian besar permintaan
aman, masih terdapat ruang perbaikan signifikan agar WAF
dapat beroperasi dengan lebih akurat dan stabil pada
lingkungan produksi. Optimalisasi ini penting untuk
mencegah gangguan terhadap operasional aplikasi yang
dapat berdampak pada user experience dan produktivitas
organisasi.

IV. KESIMPULAN DAN SARAN

Penelitian ini mengevaluasi performa ModSecurity versi
3 dengan OWASP Core Rule Set 4.19.0 menggunakan
framework pengujian GoTestWAF untuk mengidentifikasi
kemampuan deteksi serangan dan teknik bypass pada
aplikasi web. Hasil pengujian menunjukkan bahwa
konfigurasi default ModSecurity CRS 4.19.0 pada paranoia
level 1 belum memberikan perlindungan yang memadai
terhadap serangan modern, dengan hanya mampu
memblokir 45,44% dari 675 payload berbahaya yang
diujikan. Kategori serangan seperti NoSQL Injection, Path
Traversal, SSRF, dan file inclusion menunjukkan tingkat
bypass 100%, mengindikasikan gap signifikan dalam rule
coverage untuk teknologi dan teknik serangan kontemporer.
Sementara itu, hasil true-negative test menunjukkan tingkat
false positive sebesar 17,73%, yang meskipun masih dalam
batas wajar namun berpotensi mengganggu operasional

aplikasi pada implementasi produksi. Temuan ini
menegaskan bahwa optimalisasi konfigurasi melalui
peningkatan paranoia level, aktivasi optional rules,

pengembangan custom rules, dan implementasi whitelist
management merupakan langkah esensial untuk
meningkatkan efektivitas ModSecurity dalam menghadapi
landscape ancaman siber yang semakin kompleks.

Berdasarkan temuan penelitian, beberapa saran
direkomendasikan untuk pengembangan lebih lanjut.
Pertama, penelitian selanjutnya perlu melakukan pengujian
komparatif antara berbagai paranoia level (PL1-PL4) untuk
mengidentifikasi konfigurasi optimal yang
menyeimbangkan antara tingkat deteksi dan false positive
rate. Kedua, evaluasi performa ModSecurity pada
lingkungan produksi dengan beban traffic nyata diperlukan
untuk memvalidasi hasil pengujian dalam kondisi
operasional yang sesungguhnya. Ketiga, pengembangan

14

e-ISSN: 2721 — 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

custom rule set yang dioptimalkan untuk kategori serangan
dengan tingkat bypass tinggi, khususnya NoSQL Injection
dan SSRF, dapat menjadi kontribusi signifikan bagi
komunitas keamanan siber. Keempat, integrasi ModSecurity
dengan teknologi machine learning atau artificial
intelligence berpotensi meningkatkan kemampuan deteksi
terhadap serangan zero-day dan teknik obfuscation yang
kompleks. Kelima, studi longitudinal yang mengevaluasi
efektivitas berbagai versi CRS terhadap evolusi teknik
serangan dari waktu ke waktu akan memberikan
pemahaman yang lebih komprehensif tentang dinamika
perlombaan antara mekanisme pertahanan dan teknik
penyerangan. Implementasi saran-saran tersebut diharapkan
dapat menghasilkan solusi WAF yang lebih robust dan
adaptif dalam melindungi aplikasi web dari ancaman siber
yang terus berkembang.

DAFTAR PUSTAKA

- Robinson, M. Akbar, and M. A. Fadhly Ridha,
“SQL Injection and Cross Site Scripting Prevention
using OWASP ModSecurity Web Application
Firewall,” JOIV : International Journal on
Informatics Visualization, vol. 2, no. 4, pp. 286-292,
Aug. 2018, doi: 10.30630/joiv.2.4.107.

S. E. Sadat, M. F. Naseri, and K. Salamzada,
“Identifying and Mitigating Web Application
Vulnerabilities: A Comparative Study of
Countermeasures and Tools,” International Journal
Software Engineering and Computer Science
(IJSECS), vol. 4, no. 3, pp. 1109-1127, Dec. 2024,
doi: 10.35870/ijsecs.v4i3.3138.

K. D. D. Ayunda, A. Widjajarto, and A. Budiono,
“Implementation and Analysis ModSecurity on
Web-Based Application with OWASP Standards,”
JATISI (Jurnal Teknik Informatika dan Sistem
Informasi), vol. 8, no. 3, pp. 1638-1650, 2021.

A. Reyes Narvaez, M. Curipallo Martinez, E. Reyes
Narvéez, F. Lara, E. P. Reyes Narvéez, and H. Barba
Molina, “Evaluation Framework for False Positives
in Open-Source WAFs Based on OWASP CRS
Paranoia Levels: A Systematic Approach for
Comparative Measurement,” in The XXXIII
Conference on Electrical and Electronic
Engineering, Basel Switzerland: MDPI, Nov. 2025,
p. 1. doi: 10.3390/engproc2025115001.

V. Babaey and A. Ravindran, “GenSQLi: A
Generative Artificial Intelligence Framework for
Automatically Securing Web Application Firewalls
Against Structured Query Language Injection
Attacks,” Future Internet, vol. 17, no. 1, p. 8, Dec.
2024, doi: 10.3390/fi17010008.

Q. Wang et al., “Break the Wall from Bottom:
Automated Discovery of Protocol-Level Evasion
Vulnerabilities in Web Application Firewalls,” in
2024 IEEE Symposium on Security and Privacy
(SP), IEEE, May 2024, pp. 185-202. doi:
10.1109/SP54263.2024.00129.

H. Humaira, A. Hadiana, and H. Ashaury, “Analisis
Ketahanan Web Application Firewall Terhadap
Serangan SQL Injection,” Jurnal llmiah Wahana

[1]

[2]

[3]

[4]

(5]

6]

[7]

AJCSR [Academic Journal of Computer Science Research]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Pendidikan, vol. 10, no. 5, Jan. 2024, doi:
10.5281/zenodo.10526246.

A.MK, K. S. S. Bala, S. S. T. Sonti, and J. KP, “An
empirical study on the evaluation and enhancement
of OWASP CRS (Core Rule Set) in ModSecurity,”
Comput Secur, vol. 160, p. 104714, Jan. 2026, doi:
10.1016/j.cose.2025.104714.

M. Amouei, M. Rezvani, and M. Fateh, “RAT:
Reinforcement-Learning-Driven and Adaptive
Testing for Vulnerability Discovery in Web
Application Firewalls,” Dec. 2023, doi:
10.1109/TDSC.2021.3095417.

K. Li, H. Yang, and W. Visser, “Evolutionary Multi-
Task Injection Testing on Web Application
Firewalls,” Jun. 2022.

V. Babaey and A. Ravindran, “GenXSS: an Al-
Driven Framework for Automated Detection of XSS
Attacks in WAFs,” Apr. 2025.

C. Wu, J. Chen, S. Zhu, W. Feng, R. Du, and Y.
Xiang, “WAFBOOSTER: Automatic Boosting of
WAF Security Against Mutated Malicious
Payloads,” Jan. 2025.

S. A. Akhavani, B. Jabiyev, B. Kallus, C.
Topcuoglu, S. Bratus, and E. Kirda, “WAFFLED:
Exploiting Parsing Discrepancies to Bypass Web
Application Firewalls,” Oct. 2025.

Z.Qu, X. Ling, T. Wang, X. Chen, S. Ji, and C. Wu,
“AdvSQLi: Generating Adversarial SQL Injections
Against Real-World WAF-as-a-Service,” IEEE
Transactions on Information Forensics and
Security, vol. 19, pp. 2623-2638, 2024, doi:
10.1109/TIFS.2024.3350911.

G. Floris et al., “ModSec-AdvLearn: Countering
Adversarial SQL Injections with Robust Machine
Learning,” May 2025, doi:
10.1109/T1FS.2025.3583234.

A. Shaheed and M. H. D. B. Kurdy, “Web
Application Firewall Using Machine Learning and
Features Engineering,” Security and
Communication Networks, vol. 2022, pp. 1-14, Jun.
2022, doi: 10.1155/2022/5280158.

S. Toprak and A. Yavuz, “Web Application Firewall
Based on Anomaly Detection using Deep
Learning,” Acta Infologica, vol. 0, no. 0, pp. 0-0,
Oct. 2022, doi: 10.26650/acin.1039042.

B. Dawadi, B. Adhikari, and D. Srivastava, “Deep
Learning Technique-Enabled Web Application
Firewall for the Detection of Web Attacks,”
Sensors, vol. 23, no. 4, p. 2073, Feb. 2023, doi:
10.3390/s23042073.

N. Nelmiawati and K. Dealova, “Analysis of
Polyglot ~ Obfuscation Techniques against
ModSecurity in Preventing Cross-Site Scripting
(XSS) and SQL Injection Attacks with Experimental
Method,” Jurnal Teknik Informatika (Jutif), vol. 6,
no. 4, pp. 2540-2549, Sep. 2025, doi:
10.52436/1.jutif.2025.6.4.5000.

A. Reyes Narvaez, M. Curipallo Martinez, E. Reyes
Narvéez, F. Lara, E. P. Reyes Narvéez, and H. Barba
Molina, “Evaluation Framework for False Positives
in Open-Source WAFs Based on OWASP CRS

15

e-ISSN: 2721 — 3161 Vol. 8 No. 1, Januari 2026, PP. 7-15

[21]

Paranoia Levels: A Systematic Approach for
Comparative Measurement,” in The XXXIII
Conference on Electrical and Electronic
Engineering, Basel Switzerland: MDPI, Nov. 2025,
p. 1. doi: 10.3390/engproc2025115001.

C. Scano et al, ‘“ModSec-Learn: Boosting
ModSecurity with Machine Learning,” Jun. 2024,
doi: 10.1007/978-3-031-76459-2_3.

