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ABSTRACT 

Bisindo alphabet recognition is the process by which a computer system or 

software recognizes and recognizes the letters of the Bisindo alphabet. The 

Bisindo alphabet is a special alphabet used to communicate with people who are 

hearing or speech impaired. This process uses image processing and machine 

learning techniques to identify and classify each letter based on its shape and 

visual characteristics. This study used a dataset consisting of 520 Kaggle images 

divided into 26 categories. These images are resized, normalized and scaled up 

to improve model performance. A Convolutional Neural Network (CNN) model 

was developed and achieved 99.12587% accuracy after training. After the model 

was developed, the API was implemented using Flask. API functionality is tested 

using online interactions, ensuring accurate responses to image classification 

before implementation in mobile applications. 
 

1.  Introduction 

 According to statistics from the Indonesian 

Ministry of Health in 2019, around 18.9 million people 

in this country are deaf. However, most of them do not 

actively participate in the world of work. People with 

hearing impairments often feel that their ability to 

speak is impaired so they use sign language and body 

language to communicate. Sign language is a 

communication tool for deaf and speech-impaired 

individuals to interact with people around them. Deaf 

and speech-impaired individuals face difficulties 

communicating with people who are not hearing 

impaired. 

 A previous study conducted by [1], using the 

convolutional neural network method for classifying 

Indonesian sign language alphabets (Bisindo) obtained 

an accuracy of 52% of all letters. As for previous 

research conducted by [2], verification obtained 82%, 

120 image distributions were not identified correctly 

and 880 images were identified correctly, this research 

compares two methods Support Vector Machine 

(SVM) and K-Nearest Neighbor ( KNN). 

 Previous research conducted [3] using the 

convolutional neural network method provided an 

accuracy of 80.76%. The test involved 2 volunteers 

who carried out the test 52 times using the training 

ranking model. The results of the confusion matrix 

formula test show precision, recall, specificity and 

sensitivity values of 80.76% each. Further research was 

also carried out by [4] using Learning Vector 

Quantization (LVQ). The test results of this research 

were able to recognize 26 sign letters with an accuracy 

level of 61.54%. Next, carried out by [5], this research 

used the Support Vector Machine method to obtain the 

best results in this research with an accuracy level 

reaching 98.10%. 

 In this research, there are several problem 

formulations that will be answered, including how to 

determine the most suitable Convolutional Neural 

Network (CNN) architecture for recognizing the 

Indonesian Sign Language alphabet (BISINDO). This 

research also explores the ability of the CNN model to 

recognize Indonesian alphabets in real-time. With the 

right approach, it is hoped that CNN can be an effective 

solution in supporting communication for the 

community of people with hearing disabilities in 

Indonesia, especially in identifying BISINDO letters 

quickly and accurately 

 Based on the results of previous research and the 

problem formulation in this research, it can be 

concluded that the introduction of sign language has 

been mostly carried out using statistical data. This 

causes the classification process to take a long time. 

The convolutional neural network method is often used 

in previous research to carry out classification and has 

succeeded in achieving a fairly high level of accuracy. 

 This research aims to get to know Indonesian sign 

language, introduction to the letters of the alphabet A-

Z. This research applies a convolutional neural network 

algorithm using a maxpoling convolution layer 
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2.  Literature Review 

2.1 Sign Language 

     According to the Big Indonesian Dictionary 

(KBBI), sign language is a language that does not use 

human speech sounds or writing in its symbol system. 

Sign language uses movements of fingers, hands, head, 

body, and so on, which are specifically created by deaf 

people and for deaf people (sometimes also for hearing 

people) [6]. Every country has its own unique sign 

language. Even in countries that speak the same 

language, such as the United States, sign languages 

remain different.  

        Humans interact with each other through 

communication in the form of language. 

Communication can occur both verbally and non-

verbally [7].  In everyday life, humans communicate 

verbally but not all humans can communicate verbally 

2.2 Machine Learning 

According to Shalev-Shwartz and Ben-David, 

machine learning is the study of algorithms used to 

perform certain tasks that humans do automatically. As 

time passes, smart or intelligent machines will slowly 

replace and enhance human capabilities in various 

fields [8]. Machine learning is a part of artificial 

intelligence (AI) that helps computers or learning 

machines learn from past knowledge and make 

intelligent decisions [9]. Artificial Intelligence is a field 

in computer science that is aimed at creating software 

and hardware that can function as something that can 

think like humans [10]. 

2.3 CNN Method 

Convolutional Neural Network (CNN) algorithms 

are very popular in deep learning due to their ability to 

extract features that can be tailored to specific tasks, 

enabling the recognition of new objects within existing 

networks [11]. CNNs consist of neurons with weights, 

biases, and activation functions. The convolution layer 

in a CNN forms a filter with a certain length and height. 

Like other neural networks, CNN consists of input 

layers, output layers, and several hidden layers [12]. 

These layers perform operations to modify data with 

the aim of learning special features of that data. The 

three most common layers in a CNN are convolution 

layers, activation function or ReLU, and pooling. 

Convolution layers apply a series of filters to the input 

image, where each filter functions to activate certain 

features of the image. 

3.  Research Method 

There are several steps used for modeling 

development starting from data collection, data 

argumentation, data preprocessing, data slipping, 

model creation, testing, to saving the model in H5 and 

Json format. The model and model presentation that 

can be observed in Figure 1 are as: 

Start

Pengumpulan 

Citra
Preprocessing Data

Selesai

Argumentasi Citra

Model CNN

Pelatihan

Save Model

Spliting Data

Train Validasi Test

Pengujian

 

Figure 1. Modeling Development Steps 

3.1 Data collection 

At this stage the author and his team conducted a 

literature study taking data on Kaggle and sourced the 

dataset from [13],[14]and [15]. The dataset he took was 

image data of hand movements of the Indonesian 

language alphabet (BISINDO). 

 

 

Figure 2. Sample image consisting of letters A-Z 

Images taken on Kaggle, obtained five images for 

each different background, which means 20 images 

for each alphabet. The total images obtained from the 

letters A to Z were 520 images. 

3.2 Image Augmentation 

The data augmentation process was carried out by 

multiplying the original 20 images from each class (20 

images for each alphabet) to 880 images for each letter. 
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The image transformation used is brightness, image 

translation, zoom, and image rotation to rotate 64 x 64 

pixels. The following is an image of the results of data 

augmentation. 

 

Figure 3. Data Augmentation Results 

3.3 Splitting data 

 The Spliting process is divided into three main 

parts, namely Training data, Validation and Testing. It 

can be seen in table 1 below: 

Table 1. Splitting Data 

No Datasets Split Amount 

1 Traning 80 704 

2 Validation 20 88 

3 Testing 20 88 

 

3.4 Data preprocessing 

 To process the dataset before model training, the 

image_dataset_from_directory utility from 

TensorFlow is used. The training dataset consists of 

704 files, the validation dataset consists of 88 files, and 

the testing dataset consists of 88 files, all divided into 

26 different classes. Batch size and image size are set 

using the variables BATCH_SIZE and 

RESIZED_IMAGE_SIZE to ensure consistency in 

data processing. The settings shuffle=True and seed=1 

are applied so that the dataset is shuffled and consistent 

results are obtained every time this process is run. 

3.5 CNN Models 

 To increase model accuracy, this research uses the 

Adaptive Moment Estimation (ADAM) optimizer. 

Adaptive Moment Estimation combines RMSprop and 

Stochastic Gradient Descent with momentum, so it can 

handle gradient descent more effectively and 

efficiently. This optimizer uses the first (mean) and 

second (variance) moments of the gradient to perform 

parameter updates, allowing adaptive adjustment of the 

learning rate during the training process. 

 

Figure 4. CNN Models Architecture 

 The application of the convolutional neural 

network (CNN) architectural model is applied to the 

BISINDO image data training process to increase 

recognition accuracy. The input data consists of a 

three-color image, namely Red, Green, Blue (RGB) 

measuring 64x64. 

Table 2. CNN architecture 

Layer Type Output 

Shape 

Param  Descriptio

n 

conv2d_27 

(Conv2D) 

(None, 

64, 64, 

16) 

208 First 

convolutio

nal layer, 

16 filters 

max_pooling2d

_18 

(MaxPooling2D

) 

(None, 

32, 32, 

32) 

0 First max 

pooling 

layer 

dropout_12 

(Dropout) 

(None, 

32, 32, 

32) 

0 First 

dropout 

layer 

conv2d_31 

(Conv2D) 

(None, 

16, 16, 

128) 

32896 Fifth 

convolutio

nal layer, 

128 filters 

max_pooling2d

_20 

(MaxPooling2D

) 

(None, 8, 

8, 256) 

0 Third max 

pooling 

layer 

flatten_6 

(Flatten) 

(None, 

16384) 

0 Flattening 

layer 

dense_12 

(Dense) 

(None, 

512) 

83891

20 

First 

dense 

layer with 

512 units 

dense_13 

(Dense) 

(None, 

26) 

13338 Output 

layer with 

26 units 

 

3.6 Data Training 

 This model was developed with an architecture that 

has been selected based on the evaluation carried out in 

the previous sub-sections. The model structure 

includes six convolution layers and three maxpool 

layers with a pooling kernel size of 3x3. For 

optimization, this model uses RMSprop and is trained 
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for 50 epochs. The image received by the model has a 

resolution of 64 x 64 x 3, which means the image is 64 

x 64 pixels in size with three channels each 

representing the colors Red, Green, and Blue (RGB). 

3.7 Testing 

 Below is a brief explanation of how images are 

classified by model. First, the 64x64x3 image enters 

the input layer and is passed to the first convolution 

using 16 filters and the ReLU activation function. The 

image then goes through a second convolution with 32 

filters and a ReLU activation function. After the image 

passes through two convolutional layers, it is processed 

by maxpooling with a 3x3 kernel and goes to the 

dropout layer with a dropout rate of 25%. The image 

then goes through a third convolution with 32 filters 

and a ReLU activation function, then a fourth 

convolution with 64 filters and a ReLU activation 

function. After passing through a total of four 

convolutional layers, the image is reprocessed with 3x3 

maxpooling and layer dropout with a dropout rate of 

25%. The process continues with the fifth convolution 

with filter 128 and ReLU activation function, then the 

sixth convolution with filter 256 and ReLU activation 

function. After passing through a total of 6 

convolutional layers, the image is processed with 3x3 

maxpooling and enters the dropout layer with a dropout 

rate of 25%. Finally, the image is passed to the first 

dense layer with 512 filters and ReLU activation 

function. 

4. Result and Discussion 

 The steps taken in the CNN model are carrying out 

alphabet recognition analysis. By entering a test image 

whose object is traced according to the alphabet 

entered from the test data, the results will be displayed 

as in the following image. 

 

Figure 5. Image test results 

4.1 Splitting Data 

 Training data is stored in the train folder, validation 

data is stored in the val folder, and testing data is stored 

in the test folder. The training data contains 704 

images, the testing data contains 88 images and the 

validation data also contains 88 images. The author 

uses a comparison ratio of 80: 20: 20. 

 

Figure 6. Source code Splitting data 

 The np.argmax function converts test_labels from a 

one-hot encoded format to an array of integer class 

labels. Next, np.unique counts the number of samples 

in each class, producing two arrays: unique with the 

class label's unique values and counts with the number 

of occurrences of each class. The table header is printed 

by concatenating the letters A through Z using the | 

separator, followed by printing the number of test data 

in each class formatted into a two-digit string and 

concatenated with the same separator 

 

 

Figure 7. Source Displays Testing data 

4.2 Preprocesing Data 

At this stage, the image data that has been 

augmented amounts to 22906 images consisting of 26 

classes. The author indexes the data for each class and 

the class format starts from index 0 to 25. The 

following is a picture of indexing image data labels 

 

Figure 8. Source data preprocessing code 

In the validation data set, the percentage of data per 

class varied slightly, ranging from 3.63% to 4.02%. 

Class Z has the highest percentage, namely 4.02%, 

while classes S and W have the lowest percentage, 

namely 3.63%. 
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Table 3. Percentage of Train and Validation data 

Index Class Train 

Percentage 

Validation 

Percentage 

0 A 3.85% 3.98% 

1 B 3.85% 3.98% 

2 C 3.85% 3.80% 

3 D 3.85% 3.85% 

4 E 3.85% 3.76% 

5 F 3.85% 3.98% 

6 G 3.85% 3.89% 

7 H 3.85% 3.93% 

8 I 3.85% 3.80% 

9 J 3.85% 3.80% 

10 K 3.85% 3.89% 

11 L 3.85% 3.67% 

12 M 3.85% 3.93% 

13 N 3.85% 3.80% 

14 O 3.85% 3.89% 

15 P 3.85% 3.98% 

16 Q 3.85% 3.80% 

17 R 3.85% 3.93% 

18 S 3.85% 3.63% 

19 T 3.85% 3.89% 

20 U 3.85% 3.72% 

21 V 3.85% 3.89% 

22 W 3.85% 3.63% 

23 X 3.85% 3.85% 

24 Y 3.85% 3.72% 

25 Z 3.85% 4.02% 

 

4.3 Models CNN 

The author uses epoch 50 in making the model. The 

following are the results of the model that has been run: 

 

Figure 9. Output from the sequential CNN model 

 

The CNN architecture used consists of six 

convolution layers and three maxpool layers with a 3x3 

pooling kernel. This model will go through training for 

50 epochs. Next, the model will be compiled using the 

RMSprop optimizer and using the categorical 

crossentropy loss function for classification purposes. 

To monitor training performance, history callbacks 

will also be included in the model. Each change in 

epoch values, model optimizer choices, and CNN 

architecture configuration will be explained separately 

to provide a clearer picture. The results of changing the 

epoch value, using the optimizer model, and CNN 

architectural configuration will be explained 

respectively. 

4.4 Number of Epochs 

The author uses epochs 5 times, consisting of 100 

epochs, 50 epochs, 30 epochs, 15 epochs and 10 

epochs. Comparison of model performance by number 

of epochs. 

Table 4. Comparison of model performance by 

number of epochs 

Epochs 

Total 

Loss Accuracy 

100 0.0514889 99.21328% 

50 0.1347526   99.12587% 

30 0.3879700 90.07867% 

15 0.2936137 99.78147% 

10 0.2045909 99.78147% 

 

4.5 Number of Layers 

From the table, it can be concluded that increasing 

or decreasing the number of convolution or pooling 

layers does not always improve model performance. 

Reducing the dimensions of the pooling kernel to 

increase the number of parameters does not always 

improve the model accuracy. Overall, finding the 

optimal model architecture requires an iterative 

approach of trial and error. 

Table 5. Number of layers and model performance 

Number of 

Layers 

Conv2D 

Number of 

Layers 

MaxPool 

Kernel 

Size 

Trainable 

Params 

2 2 3x3 941018 

4 4 2x2 924362 

6 6 2x2 3547338 

8 8 3x3 8583402 
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4.6 Model Training 

The image processing pipeline starts with an input 

image of 64 x 64 x 3. The image goes through two 

convolution layers (16 filters and 32 filters, both with 

ReLU), then 3x3 maxpooling and 25% dropout. This 

process is repeated with additional convolutions (32 

filters, 64 filters, 128 filters, and 256 filters) followed 

by 3x3 maxpooling and 25% dropout. After that, the 

image is processed through a dense layer with 512 units 

and ReLU, normalized with batch normalization (0.99 

momentum), and 50% dropout. Finally, the image is 

classified in the second dense layer with 26 units and 

sigmoid. This process is repeated during training to 

improve the accuracy and generalization of the model. 

4.7 Loss Score and Accuracy 

With six convolution layers and three max pooling 

layers with a pooling kernel size of 3x3. Apart from the 

training duration which can be said to be relatively fast, 

the choice of architecture is also based on the smallest 

loss value and the highest accuracy value compared to 

the other three options. 

 

Figure 9. Loss and accuracy score output 

4.8 Recall and F1 Score 

After predicting the test data, the recall score was 

calculated using the recall_score function from the 

sklearn library, resulting in a value of 99.82517%. The 

F1 score calculated with the f1_score function shows a 

value of 99.82541%. The following figure illustrates 

the use of these two functions in model performance 

evaluation. 

 

Figure 10. Recall dan F1 Score 

4.9 Confidence Value 

The table below shows the incorrect predictions 

from the model, with each row showing the true label 

and the model's confidence percentage. All predictions 

have almost the same level of confidence, ranging from 

21.82% to 21.92%. This similarity indicates that the 

model has high uncertainty in distinguishing between 

different classes, which may indicate problems in 

model training or data quality. This consistent and low 

confidence value indicates that the model has difficulty 

providing accurate predictions. 

Table 6. Confidence Value 

Actual Confidence (%) 

a 21.84% 

b 21.87% 

c 21.83% 

d 21.83% 

e 21.85% 

f 21.85% 

g 21.84% 

h 21.82% 

i 21.87% 

j 21.85% 

k 21.84% 

l 21.86% 

m 21.88% 

n 21.87% 

p 21.84% 

q 21.92% 

r 21.82% 

s 21.87% 

t 21.82% 

u 21.90% 

v 21.83% 

w 21.87% 

x 21.87% 

y 21.84% 

z 21.83% 

 

4.10 Data Testing 

Testing this model consists of four main stages of 

using the model in .h5 format, evaluating with data 

testing, testing via a web browser, and testing the API 

with Postman. The .h5 file is the result of training a 

CNN model to recognize image patterns. 

The testing process begins by using a model in .h5 

format, the result of CNN training which develops the 

model's ability to recognize image patterns and 

features. 
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Figure 11. Testing Using Model.h5 

In the second option, the test data is loaded from the 

folder into the array, as are the labels. Ten images were 

selected randomly and processed with the predict 

function. The prediction results are compared with the 

labels, returning True if they match and False if they 

don't. The following image shows that all predictions 

are correct 

 

Figure 12. Testing Using testing data 

The third option involves testing the model with 

data via a web browser. The author saves the model 

in .h5 format, then tests using a web browser after 

creating code with Python, JavaScript, and an 

interactive display with HTML and CSS. Stored 

models are loaded and called via API, enabling 

seamless integration and interaction with web 

applications. 

 

Figure 13. Testing using a web browser 

The fourth option involves testing the model with 

data via Postman. The author saved the model in .h5 

format and tested the model using Postman after coding 

in Python and JavaScript. Stored models are loaded and 

called via API, allowing testing and direct interaction 

with models via Postman. 

 

Figure 14. Testing Using Postman 

5. Conclusion 

Based on the results of the Convolutional Neural 

Network (CNN) model training that has been carried 

out, it can be concluded that the CNN model in this 

research, after going through 3 convolution layers and 

3 max pooling layers, has a configuration with an input 

shape of 64x64 pixels and a filter measuring 3x3. The 

training process lasted for 50 epochs with 744 training 

data, 88 images for validation data, and 88 images for 

testing data. This model succeeded in achieving high 

accuracy of 99.21328% in recognizing Indonesian Sign 

Language (BISINDO) alphabet images. Apart from 

that, the recall score obtained from data testing reached 

99.82517%, and the f1_score value calculated using 

the Sklearn library reached 99.82541%. Testing was 

carried out using four different methods, namely data 

testing, the h5 model which was tested via Google 

Colaboratory, web browser, and Postman. 

    This research has several weaknesses, one of which 

is the inability to determine optimal parameters, which 

requires the use of trial and error methods to achieve a 

high level of accuracy. However, this research has the 

potential to be developed further, such as adding 

number recognition in sign language, as well as 

developing it into an application that can be integrated 

with mobile devices.  
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