

Jurnal Sisfotek Global

ISSN (Online): 2721 - 3161, ISSN (Print): 2088 – 1762
DOI: http://dx.doi.org/10.38101/sisfotek.v15i1.15678

Vol. 15, No. 1, March 2025, pp. 1-8

1

Introduction of Indonesian Significant Alphabet Images (BISINDO) using

The Convolutional Neural Network Algorithm

Stefanus Kabut1, Yoseph Pius Kurniawan Kelen2, Budiman Baso3, & Debora Chrisinta4

1,2,3,4 Program Studi Teknologi Informasi, Universitas Timor, Sasi Timor Tengah Utara

email: stefanuskabut@gmail.com, yosepkelen@unimor.ac.id, budimanbaso@gmail.com, deborachrisinta@unimor.ac.id

ARTICLE HISTORY

Received : August 14th, 2024
Revised : September 9th, 2024
Accepted : September 26th, 2024

KEYWORDS

Alphabet

Bisindo

Convolutional Neural Network
API

ABSTRACT

Bisindo alphabet recognition is the process by which a computer system or

software recognizes and recognizes the letters of the Bisindo alphabet. The

Bisindo alphabet is a special alphabet used to communicate with people who are

hearing or speech impaired. This process uses image processing and machine

learning techniques to identify and classify each letter based on its shape and

visual characteristics. This study used a dataset consisting of 520 Kaggle images

divided into 26 categories. These images are resized, normalized and scaled up

to improve model performance. A Convolutional Neural Network (CNN) model

was developed and achieved 99.12587% accuracy after training. After the model

was developed, the API was implemented using Flask. API functionality is tested

using online interactions, ensuring accurate responses to image classification

before implementation in mobile applications.

1. Introduction

 According to statistics from the Indonesian

Ministry of Health in 2019, around 18.9 million people

in this country are deaf. However, most of them do not

actively participate in the world of work. People with

hearing impairments often feel that their ability to

speak is impaired so they use sign language and body

language to communicate. Sign language is a

communication tool for deaf and speech-impaired

individuals to interact with people around them. Deaf

and speech-impaired individuals face difficulties

communicating with people who are not hearing

impaired.

 A previous study conducted by [1], using the

convolutional neural network method for classifying

Indonesian sign language alphabets (Bisindo) obtained

an accuracy of 52% of all letters. As for previous

research conducted by [2], verification obtained 82%,

120 image distributions were not identified correctly

and 880 images were identified correctly, this research

compares two methods Support Vector Machine

(SVM) and K-Nearest Neighbor (KNN).

 Previous research conducted [3] using the

convolutional neural network method provided an

accuracy of 80.76%. The test involved 2 volunteers

who carried out the test 52 times using the training

ranking model. The results of the confusion matrix

formula test show precision, recall, specificity and

sensitivity values of 80.76% each. Further research was

also carried out by [4] using Learning Vector

Quantization (LVQ). The test results of this research

were able to recognize 26 sign letters with an accuracy

level of 61.54%. Next, carried out by [5], this research

used the Support Vector Machine method to obtain the

best results in this research with an accuracy level

reaching 98.10%.

 In this research, there are several problem

formulations that will be answered, including how to

determine the most suitable Convolutional Neural

Network (CNN) architecture for recognizing the

Indonesian Sign Language alphabet (BISINDO). This

research also explores the ability of the CNN model to

recognize Indonesian alphabets in real-time. With the

right approach, it is hoped that CNN can be an effective

solution in supporting communication for the

community of people with hearing disabilities in

Indonesia, especially in identifying BISINDO letters

quickly and accurately

 Based on the results of previous research and the

problem formulation in this research, it can be

concluded that the introduction of sign language has

been mostly carried out using statistical data. This

causes the classification process to take a long time.

The convolutional neural network method is often used

in previous research to carry out classification and has

succeeded in achieving a fairly high level of accuracy.

 This research aims to get to know Indonesian sign

language, introduction to the letters of the alphabet A-

Z. This research applies a convolutional neural network

algorithm using a maxpoling convolution layer

2

2. Literature Review

2.1 Sign Language

 According to the Big Indonesian Dictionary

(KBBI), sign language is a language that does not use

human speech sounds or writing in its symbol system.

Sign language uses movements of fingers, hands, head,

body, and so on, which are specifically created by deaf

people and for deaf people (sometimes also for hearing

people) [6]. Every country has its own unique sign

language. Even in countries that speak the same

language, such as the United States, sign languages

remain different.

 Humans interact with each other through

communication in the form of language.

Communication can occur both verbally and non-

verbally [7]. In everyday life, humans communicate

verbally but not all humans can communicate verbally

2.2 Machine Learning

According to Shalev-Shwartz and Ben-David,

machine learning is the study of algorithms used to

perform certain tasks that humans do automatically. As

time passes, smart or intelligent machines will slowly

replace and enhance human capabilities in various

fields [8]. Machine learning is a part of artificial

intelligence (AI) that helps computers or learning

machines learn from past knowledge and make

intelligent decisions [9]. Artificial Intelligence is a field

in computer science that is aimed at creating software

and hardware that can function as something that can

think like humans [10].

2.3 CNN Method

Convolutional Neural Network (CNN) algorithms

are very popular in deep learning due to their ability to

extract features that can be tailored to specific tasks,

enabling the recognition of new objects within existing

networks [11]. CNNs consist of neurons with weights,

biases, and activation functions. The convolution layer

in a CNN forms a filter with a certain length and height.

Like other neural networks, CNN consists of input

layers, output layers, and several hidden layers [12].

These layers perform operations to modify data with

the aim of learning special features of that data. The

three most common layers in a CNN are convolution

layers, activation function or ReLU, and pooling.

Convolution layers apply a series of filters to the input

image, where each filter functions to activate certain

features of the image.

3. Research Method

There are several steps used for modeling

development starting from data collection, data

argumentation, data preprocessing, data slipping,

model creation, testing, to saving the model in H5 and

Json format. The model and model presentation that

can be observed in Figure 1 are as:

Start

Pengumpulan

Citra
Preprocessing Data

Selesai

Argumentasi Citra

Model CNN

Pelatihan

Save Model

Spliting Data

Train Validasi Test

Pengujian

Figure 1. Modeling Development Steps

3.1 Data collection

At this stage the author and his team conducted a

literature study taking data on Kaggle and sourced the

dataset from [13],[14]and [15]. The dataset he took was

image data of hand movements of the Indonesian

language alphabet (BISINDO).

Figure 2. Sample image consisting of letters A-Z

Images taken on Kaggle, obtained five images for

each different background, which means 20 images

for each alphabet. The total images obtained from the

letters A to Z were 520 images.

3.2 Image Augmentation

The data augmentation process was carried out by

multiplying the original 20 images from each class (20

images for each alphabet) to 880 images for each letter.

3

The image transformation used is brightness, image

translation, zoom, and image rotation to rotate 64 x 64

pixels. The following is an image of the results of data

augmentation.

Figure 3. Data Augmentation Results

3.3 Splitting data

 The Spliting process is divided into three main

parts, namely Training data, Validation and Testing. It

can be seen in table 1 below:

Table 1. Splitting Data

No Datasets Split Amount

1 Traning 80 704

2 Validation 20 88

3 Testing 20 88

3.4 Data preprocessing

 To process the dataset before model training, the

image_dataset_from_directory utility from

TensorFlow is used. The training dataset consists of

704 files, the validation dataset consists of 88 files, and

the testing dataset consists of 88 files, all divided into

26 different classes. Batch size and image size are set

using the variables BATCH_SIZE and

RESIZED_IMAGE_SIZE to ensure consistency in

data processing. The settings shuffle=True and seed=1

are applied so that the dataset is shuffled and consistent

results are obtained every time this process is run.

3.5 CNN Models

 To increase model accuracy, this research uses the

Adaptive Moment Estimation (ADAM) optimizer.

Adaptive Moment Estimation combines RMSprop and

Stochastic Gradient Descent with momentum, so it can

handle gradient descent more effectively and

efficiently. This optimizer uses the first (mean) and

second (variance) moments of the gradient to perform

parameter updates, allowing adaptive adjustment of the

learning rate during the training process.

Figure 4. CNN Models Architecture

 The application of the convolutional neural

network (CNN) architectural model is applied to the

BISINDO image data training process to increase

recognition accuracy. The input data consists of a

three-color image, namely Red, Green, Blue (RGB)

measuring 64x64.

Table 2. CNN architecture

Layer Type Output

Shape

Param Descriptio

n

conv2d_27

(Conv2D)

(None,

64, 64,

16)

208 First

convolutio

nal layer,

16 filters

max_pooling2d

_18

(MaxPooling2D

)

(None,

32, 32,

32)

0 First max

pooling

layer

dropout_12

(Dropout)

(None,

32, 32,

32)

0 First

dropout

layer

conv2d_31

(Conv2D)

(None,

16, 16,

128)

32896 Fifth

convolutio

nal layer,

128 filters

max_pooling2d

_20

(MaxPooling2D

)

(None, 8,

8, 256)

0 Third max

pooling

layer

flatten_6

(Flatten)

(None,

16384)

0 Flattening

layer

dense_12

(Dense)

(None,

512)

83891

20

First

dense

layer with

512 units

dense_13

(Dense)

(None,

26)

13338 Output

layer with

26 units

3.6 Data Training

 This model was developed with an architecture that

has been selected based on the evaluation carried out in

the previous sub-sections. The model structure

includes six convolution layers and three maxpool

layers with a pooling kernel size of 3x3. For

optimization, this model uses RMSprop and is trained

4

for 50 epochs. The image received by the model has a

resolution of 64 x 64 x 3, which means the image is 64

x 64 pixels in size with three channels each

representing the colors Red, Green, and Blue (RGB).

3.7 Testing

 Below is a brief explanation of how images are

classified by model. First, the 64x64x3 image enters

the input layer and is passed to the first convolution

using 16 filters and the ReLU activation function. The

image then goes through a second convolution with 32

filters and a ReLU activation function. After the image

passes through two convolutional layers, it is processed

by maxpooling with a 3x3 kernel and goes to the

dropout layer with a dropout rate of 25%. The image

then goes through a third convolution with 32 filters

and a ReLU activation function, then a fourth

convolution with 64 filters and a ReLU activation

function. After passing through a total of four

convolutional layers, the image is reprocessed with 3x3

maxpooling and layer dropout with a dropout rate of

25%. The process continues with the fifth convolution

with filter 128 and ReLU activation function, then the

sixth convolution with filter 256 and ReLU activation

function. After passing through a total of 6

convolutional layers, the image is processed with 3x3

maxpooling and enters the dropout layer with a dropout

rate of 25%. Finally, the image is passed to the first

dense layer with 512 filters and ReLU activation

function.

4. Result and Discussion

 The steps taken in the CNN model are carrying out

alphabet recognition analysis. By entering a test image

whose object is traced according to the alphabet

entered from the test data, the results will be displayed

as in the following image.

Figure 5. Image test results

4.1 Splitting Data

 Training data is stored in the train folder, validation

data is stored in the val folder, and testing data is stored

in the test folder. The training data contains 704

images, the testing data contains 88 images and the

validation data also contains 88 images. The author

uses a comparison ratio of 80: 20: 20.

Figure 6. Source code Splitting data

 The np.argmax function converts test_labels from a

one-hot encoded format to an array of integer class

labels. Next, np.unique counts the number of samples

in each class, producing two arrays: unique with the

class label's unique values and counts with the number

of occurrences of each class. The table header is printed

by concatenating the letters A through Z using the |

separator, followed by printing the number of test data

in each class formatted into a two-digit string and

concatenated with the same separator

Figure 7. Source Displays Testing data

4.2 Preprocesing Data

At this stage, the image data that has been

augmented amounts to 22906 images consisting of 26

classes. The author indexes the data for each class and

the class format starts from index 0 to 25. The

following is a picture of indexing image data labels

Figure 8. Source data preprocessing code

In the validation data set, the percentage of data per

class varied slightly, ranging from 3.63% to 4.02%.

Class Z has the highest percentage, namely 4.02%,

while classes S and W have the lowest percentage,

namely 3.63%.

5

Table 3. Percentage of Train and Validation data

Index Class Train

Percentage

Validation

Percentage

0 A 3.85% 3.98%

1 B 3.85% 3.98%

2 C 3.85% 3.80%

3 D 3.85% 3.85%

4 E 3.85% 3.76%

5 F 3.85% 3.98%

6 G 3.85% 3.89%

7 H 3.85% 3.93%

8 I 3.85% 3.80%

9 J 3.85% 3.80%

10 K 3.85% 3.89%

11 L 3.85% 3.67%

12 M 3.85% 3.93%

13 N 3.85% 3.80%

14 O 3.85% 3.89%

15 P 3.85% 3.98%

16 Q 3.85% 3.80%

17 R 3.85% 3.93%

18 S 3.85% 3.63%

19 T 3.85% 3.89%

20 U 3.85% 3.72%

21 V 3.85% 3.89%

22 W 3.85% 3.63%

23 X 3.85% 3.85%

24 Y 3.85% 3.72%

25 Z 3.85% 4.02%

4.3 Models CNN

The author uses epoch 50 in making the model. The

following are the results of the model that has been run:

Figure 9. Output from the sequential CNN model

The CNN architecture used consists of six

convolution layers and three maxpool layers with a 3x3

pooling kernel. This model will go through training for

50 epochs. Next, the model will be compiled using the

RMSprop optimizer and using the categorical

crossentropy loss function for classification purposes.

To monitor training performance, history callbacks

will also be included in the model. Each change in

epoch values, model optimizer choices, and CNN

architecture configuration will be explained separately

to provide a clearer picture. The results of changing the

epoch value, using the optimizer model, and CNN

architectural configuration will be explained

respectively.

4.4 Number of Epochs

The author uses epochs 5 times, consisting of 100

epochs, 50 epochs, 30 epochs, 15 epochs and 10

epochs. Comparison of model performance by number

of epochs.

Table 4. Comparison of model performance by

number of epochs

Epochs

Total

Loss Accuracy

100 0.0514889 99.21328%

50 0.1347526 99.12587%

30 0.3879700 90.07867%

15 0.2936137 99.78147%

10 0.2045909 99.78147%

4.5 Number of Layers

From the table, it can be concluded that increasing

or decreasing the number of convolution or pooling

layers does not always improve model performance.

Reducing the dimensions of the pooling kernel to

increase the number of parameters does not always

improve the model accuracy. Overall, finding the

optimal model architecture requires an iterative

approach of trial and error.

Table 5. Number of layers and model performance

Number of

Layers

Conv2D

Number of

Layers

MaxPool

Kernel

Size

Trainable

Params

2 2 3x3 941018

4 4 2x2 924362

6 6 2x2 3547338

8 8 3x3 8583402

6

4.6 Model Training

The image processing pipeline starts with an input

image of 64 x 64 x 3. The image goes through two

convolution layers (16 filters and 32 filters, both with

ReLU), then 3x3 maxpooling and 25% dropout. This

process is repeated with additional convolutions (32

filters, 64 filters, 128 filters, and 256 filters) followed

by 3x3 maxpooling and 25% dropout. After that, the

image is processed through a dense layer with 512 units

and ReLU, normalized with batch normalization (0.99

momentum), and 50% dropout. Finally, the image is

classified in the second dense layer with 26 units and

sigmoid. This process is repeated during training to

improve the accuracy and generalization of the model.

4.7 Loss Score and Accuracy

With six convolution layers and three max pooling

layers with a pooling kernel size of 3x3. Apart from the

training duration which can be said to be relatively fast,

the choice of architecture is also based on the smallest

loss value and the highest accuracy value compared to

the other three options.

Figure 9. Loss and accuracy score output

4.8 Recall and F1 Score

After predicting the test data, the recall score was

calculated using the recall_score function from the

sklearn library, resulting in a value of 99.82517%. The

F1 score calculated with the f1_score function shows a

value of 99.82541%. The following figure illustrates

the use of these two functions in model performance

evaluation.

Figure 10. Recall dan F1 Score

4.9 Confidence Value

The table below shows the incorrect predictions

from the model, with each row showing the true label

and the model's confidence percentage. All predictions

have almost the same level of confidence, ranging from

21.82% to 21.92%. This similarity indicates that the

model has high uncertainty in distinguishing between

different classes, which may indicate problems in

model training or data quality. This consistent and low

confidence value indicates that the model has difficulty

providing accurate predictions.

Table 6. Confidence Value

Actual Confidence (%)

a 21.84%

b 21.87%

c 21.83%

d 21.83%

e 21.85%

f 21.85%

g 21.84%

h 21.82%

i 21.87%

j 21.85%

k 21.84%

l 21.86%

m 21.88%

n 21.87%

p 21.84%

q 21.92%

r 21.82%

s 21.87%

t 21.82%

u 21.90%

v 21.83%

w 21.87%

x 21.87%

y 21.84%

z 21.83%

4.10 Data Testing

Testing this model consists of four main stages of

using the model in .h5 format, evaluating with data

testing, testing via a web browser, and testing the API

with Postman. The .h5 file is the result of training a

CNN model to recognize image patterns.

The testing process begins by using a model in .h5

format, the result of CNN training which develops the

model's ability to recognize image patterns and

features.

7

Figure 11. Testing Using Model.h5

In the second option, the test data is loaded from the

folder into the array, as are the labels. Ten images were

selected randomly and processed with the predict

function. The prediction results are compared with the

labels, returning True if they match and False if they

don't. The following image shows that all predictions

are correct

Figure 12. Testing Using testing data

The third option involves testing the model with

data via a web browser. The author saves the model

in .h5 format, then tests using a web browser after

creating code with Python, JavaScript, and an

interactive display with HTML and CSS. Stored

models are loaded and called via API, enabling

seamless integration and interaction with web

applications.

Figure 13. Testing using a web browser

The fourth option involves testing the model with

data via Postman. The author saved the model in .h5

format and tested the model using Postman after coding

in Python and JavaScript. Stored models are loaded and

called via API, allowing testing and direct interaction

with models via Postman.

Figure 14. Testing Using Postman

5. Conclusion

Based on the results of the Convolutional Neural

Network (CNN) model training that has been carried

out, it can be concluded that the CNN model in this

research, after going through 3 convolution layers and

3 max pooling layers, has a configuration with an input

shape of 64x64 pixels and a filter measuring 3x3. The

training process lasted for 50 epochs with 744 training

data, 88 images for validation data, and 88 images for

testing data. This model succeeded in achieving high

accuracy of 99.21328% in recognizing Indonesian Sign

Language (BISINDO) alphabet images. Apart from

that, the recall score obtained from data testing reached

99.82517%, and the f1_score value calculated using

the Sklearn library reached 99.82541%. Testing was

carried out using four different methods, namely data

testing, the h5 model which was tested via Google

Colaboratory, web browser, and Postman.

 This research has several weaknesses, one of which

is the inability to determine optimal parameters, which

requires the use of trial and error methods to achieve a

high level of accuracy. However, this research has the

potential to be developed further, such as adding

number recognition in sign language, as well as

developing it into an application that can be integrated

with mobile devices.

References

[1] A. Hibatullah and I. Maliki, “Penerapan

Metode Convolutional Neural Network,”

Unikom, pp. 1–8, 2019.

[2] C. Umam and L. B. Handoko, “Convolutional

Neural Network (CNN) Untuk Identifkasi

Karakter Hiragana,” Pros. Semin. Nas. Lppm

Ump, vol. 0, no. 0, pp. 527–533, 2020,

[Online]. Available:

https://semnaslppm.ump.ac.id/index.php/semn

aslppm/article/view/199

[3] M. Sholawati, K. Auliasari, and F.

Ariwibisono, “Pengembangan Aplikasi

Pengenalan Bahasa Isyarat Abjad Sibi

Menggunakan Metode Convolutional Neural

8

Network (Cnn),” JATI (Jurnal Mhs. Tek.

Inform., vol. 6, no. 1, pp. 134–144, 2022, doi:

10.36040/jati.v6i1.4507.

[4] S. R. Yulian and S. Suhartono, “Pengenalan

Bahasa Isyarat Huruf Abjad Menggunakan

Metode Learning Vector Quantization

(LVQ),” J. Masy. Inform., vol. 8, no. 1, pp. 1–

8, 2017, doi: 10.14710/jmasif.8.1.31450.

[5] Y. P. K. Kelen and B. Baso, “Klasifikasi Tenun

Timor Menggunakan Metode SVM

Berdasarkan Speeded Up Robust Features,” J.

Teknol. Inf. dan Ilmu Komput., vol. 10, no. 6,

pp. 1353–1360, 2023, doi:

10.25126/jtiik.1067625.

[6] O. Mailani, I. Nuraeni, S. A. Syakila, and J.

Lazuardi, “Bahasa Sebagai Alat Komunikasi

Dalam Kehidupan Manusia,” Kampret J., vol.

1, no. 1, pp. 1–10, 2022, doi:

10.35335/kampret.v1i1.8.

[7] C. Li, S. Xiuting, W. Yan, T. Development,

and I. Technology, “陈 黎 1 ，盛秀婷 2 ，吴

岩 3 (1.,” vol. 4, no. 19, pp. 8–14, 2022.

[8] A. Roihan, P. A. Sunarya, and A. S. Rafika,

“Pemanfaatan Machine Learning dalam

Berbagai Bidang: Review paper,” IJCIT

(Indonesian J. Comput. Inf. Technol., vol. 5,

no. 1, pp. 75–82, 2020, doi:

10.31294/ijcit.v5i1.7951.

[9] A. Fathurohman, “Machine Learning Untuk

Pendidikan: Mengapa Dan Bagaimana,” J.

Inform. dan Teknol. Komput., vol. 1, no. 3, pp.

57–62, 2021.

[10] A. Sunarya, S. Santoso, and W. Sentanu,

“Sistem Pakar Untuk Mendiagnosa Gangguan

Jaringan Lan,” Creat. Commun. Innov.

Technol. J., vol. 8, no. 2, pp. 1–11, 2015.

[11] Verdy and Ery Hartati, “Klasifikasi Penyakit

Mata Menggunakan Convolutional Neural

Network Model Resnet-50,” J. Rekayasa Sist.

Inf. dan Teknol., vol. 1, no. 3, pp. 199–206,

2024, doi: 10.59407/jrsit.v1i3.529.

[12] I. Suhardin, A. Patombongi, and A. M. Islah,

“MENGIDENTIFIKASI JENIS TANAMAN

BERDASARKAN CITRA DAUN

MENGGUNAKAN AlGORITMA

CONVOLUTIONAL NEURAL

NETWORK,” Simtek J. Sist. Inf. dan Tek.

Komput., vol. 6, no. 2, pp. 100–108, 2021, doi:

10.51876/simtek.v6i2.101.

[13] Alfredolorentiars, “bisindo leter dataset.”

https://www.kaggle.com/alfredolorentiars/dat

asets

[14] Achmadnoer, “Bahasa Isyarat Indonesia

(BISINDO) Alphabets”, [Online]. Available:

https://www.kaggle.com/datasets/achmadnoer

/alfabet-bisindo

[15] Idhamozi, “Dataset berupa foto Bahasa Isyarat

Indonesia. Indonesian Sign Language

BISINDO.”

https://www.kaggle.com/datasets/idhamozi/in

donesian-sign-language-bisindo

