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ABSTRACT 

This study aims to develop and evaluate methods for digital image source device 
identification through three main approaches, namely EXIF metadata feature 
extraction, visual analysis using Convolutional Neural Networks (CNN), and 
Photo Response Non-Uniformity (PRNU). The dataset consists of 500 original 
images captured from five different devices, with 100 images per device 
containing intact metadata. The EXIF-only model was built using the Random 
Forest algorithm, the CNN model employed a ResNet18 architecture, while 
PRNU utilized high-pass filtering to construct sensor noise templates for each 
device. Evaluation was carried out using accuracy, precision, recall, and f1-score 
metrics. The results show that EXIF-only achieved perfect accuracy (100%) on 
the dataset with complete metadata, CNN reached 21% accuracy with 
imbalanced recall across classes, and PRNU demonstrated low performance due 
to the limited number of templates and image quality. These findings indicate 
that EXIF-only excels under intact metadata conditions but is vulnerable to 
manipulation, CNN can be applied when metadata is unavailable but requires 
optimization, while PRNU has potential resilience against metadata manipulation 
but demands higher-quality data. The novelty of this study lies in its comparative 
multi-method approach that integrates metadata-based, visual-based, and sensor 
fingerprint-based analyses, along with the proposal of a multimodal integration 
framework to enhance the reliability of device identification systems in digital 
forensic practice. 
 

1.  Introduction 

The extraction of Exchangeable Image File Format 

(EXIF) metadata is an essential step in identifying the 

source device of digital images in digital forensics, 

with methods evolving from traditional techniques 

based on metadata analysis software and camera 

fingerprints [1] to procedures that strengthen the 

validity of evidence in court [2]. Advances in machine 

learning and deep learning have enabled the 

combination of pseudonoise residuals and noiseprints 

to improve identification accuracy [3]. while 

automated and semi-automated systems accelerate the 

extraction process [4], [5]. Statistical analyses such as 

Photo-Response Non-Uniformity (PRNU) and the use 

of convolutional neural networks further enhance 

source device authentication [6], [7]. 

In reality, the integration of Exchangeable Image 

File Format (EXIF) metadata feature extraction with 

advanced forensic identification algorithms is still 

rarely implemented optimally. Although the 

combination of metadata with machine learning and 

deep learning has shown potential for improving 

accuracy [8], [9]. the challenge of metadata 

manipulation that reduces the reliability of 

authentication has not yet been fully addressed [6], 

[10]. There is no standardized approach capable of 

maintaining high performance when metadata is 

incomplete or has been altered, thereby necessitating 

more robust and adaptive methods [2], [11]. 

Conventional digital forensic techniques that utilize 

Exchangeable Image File Format (EXIF) metadata 

have the advantage of leveraging standardized 

metadata structures, such as brand information, camera 

model, and image capture parameters, as well as source 

device recognition through stable Photo-Response 

Non-Uniformity (PRNU) patterns [1], [3]. However, 

the effectiveness of this method is limited by the 

potential manipulation or deletion of metadata, which 

can reduce the reliability of image authentication [12]. 

The complexity of imaging technology also hinders the 

generalization of noise patterns across devices [6], 

along with the challenges faced by passive techniques 
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when dealing with advanced editing or cross-platform 

migration that modifies EXIF data [13]. 

In reality, digital forensic methods are still not 

effective in handling Exchangeable Image File Format 

(EXIF) metadata that is incomplete, manipulated, or 

inconsistent. Integrative approaches that combine 

metadata with intrinsic image features have indeed 

shown potential [10], [14], but conventional algorithms 

remain vulnerable to manipulation [15] and there is no 

established standard to ensure the reliability of results 

when metadata is compromised [16], [17]. 

The utilization of Exchangeable Image File Format 

(EXIF) metadata has been proven to improve the 

accuracy of digital image source device identification 

through the integration of traditional techniques and 

deep learning. Methods such as CNN-based Noiseprint 

are capable of combining metadata with intrinsic image 

features for more reliable authentication [1], while the 

combination of Photo-Response Non-Uniformity 

(PRNU) with machine learning enhances resilience 

against manipulation [3], [12]. Although effective, the 

challenge of metadata manipulation has encouraged the 

use of image noise patterns as a safer alternative [6]. 

In reality, empirical evidence regarding the 

improvement of device identification accuracy when 

combining Exchangeable Image File Format (EXIF) 

metadata with other forensic features on real-world 

datasets is still rarely reported comprehensively. 

Although holistic approaches that integrate metadata 

analysis, Error Level Analysis (ELA), and deep 

learning algorithms have been proven to enhance the 

accuracy of manipulation detection and source 

identification [18], and CNN-based systems combined 

with similarity networks have shown performance 

improvements on real-world datasets [8], most studies 

have not yet tested the effectiveness of these methods 

under diverse and uncontrolled forensic conditions. 

There is no established evaluation standard to 

consistently assess the synergy between metadata and 

intrinsic image features, leaving a wide open 

opportunity for the optimization of such integrative 

methods in digital forensic practice [16], [17]. 

This study aims to develop and evaluate methods 

for digital image source device identification through 

three main approaches, namely EXIF metadata feature 

extraction, visual analysis using Convolutional Neural 

Networks (CNN), and Photo Response Non-

Uniformity (PRNU). The novelty of this research lies 

in its comparative multi-method approach that 

simultaneously examines three device identification 

pathways (EXIF-only, CNN, and PRNU) on a multi-

device image dataset with complete metadata, 

something that is rarely conducted in an integrated 

manner within digital forensic studies. 

2.  Research methods 

2.1 Research Design 

This study employs a quantitative experimental 

approach with a comparative evaluation design to 

examine the effectiveness of Exchangeable Image File 

Format (EXIF) metadata feature extraction in 

improving the accuracy of digital image source device 

identification within a forensic context. The proposed 

method is validated by comparing its performance 

against existing device identification techniques, 

namely Photo Response Non-Uniformity (PRNU) and 

CNN (Convolutional Neural Network)-based visual 

feature extraction, with reference to best practices 

outlined in previous studies [1], [3], [12], [19]. The 

research flow is presented in Figure 1. 

 
Figure 1. Research flow diagram 

The figure illustrates the research methodology 

flow carried out systematically to examine the 

identification of digital image source devices. The 

study begins with the data collection stage, where 

images are obtained from five different devices used as 

the dataset source. Subsequently, EXIF metadata 

extraction is performed using ExifTool to obtain 

technical information related to the images, such as 

Model, Make, ISO, ExposureTime, and other 

parameters. At the data processing stage, the extracted 

metadata is examined for its validity and completeness 

to ensure that no corrupted or manipulated data is 

included. 

The next stage is data transformation, in which the 

dataset is divided into three modeling pathways: the 

EXIF-only model, the CNN model, and the PRNU 

model. The EXIF-only model converts metadata into 

numerical and categorical representations through 

encoding and normalization processes. The CNN 

model utilizes raw images that have been normalized 

and converted into tensors for training using the 
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ResNet18 architecture. Meanwhile, the PRNU model 

constructs sensor fingerprint templates from image 

residual noise obtained through high-pass filtering. 

These three pathways then proceed to the modeling 

stage, where each model is trained and tested according 

to its respective approach. Subsequently, model 

evaluation is conducted using accuracy, precision, 

recall, and f1-score metrics, along with further 

analyses. The evaluation results are then 

comprehensively analyzed in the analysis stage by 

comparing the strengths and limitations of each 

method. The study concludes with the conclusion 

stage, which presents the interpretation of findings and 

their implications within the context of digital 

forensics. 

2.2 Data Dataset and Data Collection 

The dataset consists of original JPEG images 

captured from five devices: OnePlus_8T, 

Poco_F5_Pro_5G, Samsung_Galaxy_S20FE, 

iPhone_11, and iPhone_15. Each device contributed 

100 images with complete EXIF metadata. For PRNU 

testing, 15 images per device were used as reference 

templates, while the remaining images were employed 

as test data. 

2.3 Data Preprocessing and Transformation 

The validated EXIF data were converted into 

numerical format through feature encoding for 

attributes such as ISO, ExposureTime, FNumber, and 

FocalLength, while categorical attributes such as 

Make, Model, and Software were processed using one-

hot encoding. All features were then normalized to 

ensure a uniform scale. 

For the CNN approach, the images were pixel-

normalized, converted into tensors, and split into 80% 

training data and 20% validation data. 

In the PRNU approach, images were EXIF-

transposed to preserve their original orientation, 

resized and center-cropped to 256×256 pixels, and then 

subjected to high-pass filtering to extract sensor 

residual noise. These PRNU features, or alternatively 

Noiseprint [1], can be integrated with EXIF features to 

form a richer combined representation, which is 

expected to improve the accuracy and robustness of 

device identification in the context of digital forensics.  

2.4 Modeling 

Modeling in this study was carried out through 

three main approaches that can be integrated to build a 

more robust source device identification system. First, 

the EXIF-only approach employed the Random Forest 

algorithm to classify devices based on metadata that 

had undergone feature encoding and normalization. 

Second, the image-based CNN approach utilized the 

ResNet18 architecture trained from scratch on raw 

images to recognize differences in visual patterns 

produced by the imaging process of each device. Third, 

the Photo Response Non-Uniformity (PRNU) 

approach constructed sensor noise fingerprint 

templates for each device by applying high-pass 

filtering and computing correlation scores against test 

images. These approaches can further be developed 

into a multimodal architecture that combines raw 

image inputs and EXIF metadata within a CNN-based 

model, as proposed by Wang et al. (2021)[7], which 

demonstrated that multi-source data integration can 

improve the accuracy and robustness of device 

identification systems in complex environments. 

2.5 Model Evaluation 

Evaluation was conducted using the k-fold cross-

validation technique to test the consistency of model 

performance across different data subsets, with the 

main metrics including accuracy, precision, recall, and 

f1-score, as commonly applied in digital forensic 

studies based on machine learning [12]. Additional 

analyses included generating Receiver Operating 

Characteristic (ROC) curves per class (one-vs-rest) for 

the EXIF-only and CNN models, as well as boxplots of 

PRNU correlation score distributions per device to 

observe the spread and overlap of sensor fingerprint 

patterns across device classes. 

3.  Results and Discussion 

3.1 EXIF- only performance 

The results of the EXIF-only model demonstrate 

perfect performance in classifying the source devices 

of digital images. The EXIF-only model achieved 

maximum accuracy across all metrics (precision, 

recall, f1-score = 1.00). This perfect performance is 

consistent with the findings on the Receiver Operating 

Characteristic (ROC) curves per class, where all ROC 

lines are located at the ideal point with a True Positive 

Rate (TPR) = 1.0 and a False Positive Rate (FPR) 

approaching 0 for all classes. The Area Under the 

Curve (AUC) values, which reached 1.00 for all 

devices, indicate maximum discriminative capability 

between positive and negative classes. The ROC 

results of the EXIF-only model are shown in Figure 2. 

 
Figure 2. EXIF-only Model ROC visualization 
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Figure 2 presents the Receiver Operating 

Characteristic (ROC) curves per class for the EXIF-

only model in classifying five types of devices, namely 

OnePlus 8T, Poco F5 Pro 5G, Samsung Galaxy S20FE, 

iPhone 11, and iPhone 15. It can be observed that all 

ROC curves for each class follow the ideal path at the 

top-left corner of the graph, indicating a True Positive 

Rate (TPR) of 1.0 with a False Positive Rate (FPR) 

close to 0. The Area Under the Curve (AUC) values for 

all classes are 1.00, which indicates perfect 

performance in distinguishing each device. These 

results confirm that the EXIF metadata features used, 

particularly attributes such as Model and Software, 

possess very high discriminative power on datasets that 

are intact and not manipulated. Nevertheless, this 

perfect performance should be critically reviewed in a 

forensic context, as the heavy reliance on metadata 

makes this model vulnerable to metadata manipulation 

when EXIF attributes are deliberately deleted or 

altered. 

3.2 Performance of CNN Methods 

The CNN model achieved an accuracy of 21% with 

an average precision of 0.58 but a low recall of 0.24. 

There was a noticeable imbalance in detection across 

classes—for instance, iPhone_15 achieved a recall of 

0.94, whereas iPhone_11 recorded a recall of 0.00. The 

learning curves indicated signs of overfitting, likely 

due to the limited dataset size, the absence of 

pretraining, and the minimal application of data 

augmentation. 

These findings are consistent with the class-wise 

Receiver Operating Characteristic (ROC) results 

shown in Figure 3. The ROC results for the CNN model 

are presented in Figure 3. 

 
Figure 3. CNN Model ROC visualization 

Based on Figure 3, the Area Under the Curve 

(AUC) values varied considerably across classes, with 

the highest being OnePlus_8T (AUC = 0.83) and the 

lowest being iPhone_11 (AUC = 0.57) and iPhone_15 

(AUC = 0.58). This variation in AUC values indicates 

that the model’s discriminative ability in distinguishing 

positive and negative classes was not consistent across 

all devices. Classes with AUC values above 0.75 

(OnePlus_8T, Samsung_Galaxy_S20FE) tended to 

demonstrate more stable classification performance, 

whereas classes with AUC values approaching 0.5 

exhibited performance nearly equivalent to random 

prediction. This reinforces the indication that the CNN 

architecture used was not yet able to capture 

sufficiently representative visual features for all 

devices, particularly in classes with similar visual 

characteristics or varying image quality. 

3.3 Performance of the PRNU Method 

To evaluate the performance of the Photo Response 

Non-Uniformity (PRNU) method, an analysis of the 

distribution of correlation scores across devices was 

carried out using a boxplot representation. This 

analysis aims to observe the spread of residual noise 

correlation values generated by each device, as well as 

to identify potential overlaps between classes. 

Accordingly, the PRNU score boxplot per device 

provides an initial overview of the stability of sensor 

fingerprints and the level of discrimination between 

devices. The visualization results are presented in 

Figure 4. 

 
Figure 4. PRNU score visualization 

Based on the testing results using the Photo 

Response Non-Uniformity (PRNU) method as shown 

in Figure 4, the per-device correlations indicate that the 

distribution of correlation values lies within a relatively 

narrow range, approximately −0.01 to 0.01. This range 

suggests that the extracted sensor noise signal has low 

strength, thereby limiting PRNU’s discriminative 

capability in distinguishing devices. Furthermore, an 

overlap in the distributions across devices can be 

observed, which means that the residual sensor noise 

patterns between cameras cannot be clearly 

differentiated. This directly impacts the high rate of 

misidentification, where images from one device may 

potentially be misclassified as belonging to another 

device. 

The occurrence of numerous outliers across almost 

all devices, particularly on the OnePlus 8T and iPhone 

15, indicates instability in the construction of PRNU 

templates. This factor is most likely caused by the 

limited number of images used to build the templates 

(only 15 images per device), resulting in sensor noise 
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signals that are not sufficiently strong and consistent. 

In addition, the use of compressed image formats 

(JPEG) further weakens the PRNU patterns, as 

compression and post-processing can obscure or 

degrade the sensor noise signals that should be 

distinctive. 

Thus, although PRNU is theoretically known as a 

robust method for identifying source devices because it 

is based on the physical fingerprint of the sensor, the 

experimental results indicate that its effectiveness is 

highly dependent on the quality and quantity of the data 

used. Under conditions of limited datasets and highly 

compressed images, PRNU performance cannot 

achieve optimal results. This underscores the necessity 

of increasing the number of template images per 

device, using high-quality images (with minimal 

compression), and applying more advanced noise 

extraction techniques in order for PRNU to function 

effectively in the context of digital forensics. 

3.4 Method Performance Comparison 

The radar chart illustrates that EXIF-only 

outperforms in all metrics, CNN shows moderate 

precision but low recall and f1-score, while PRNU lags 

behind in all metrics. In the forensic context, these 

comparative results are presented in Figure 5. 

 
Figure 5. Comparison visualization of EXIF-Only vs 

CNN vs PRNU 

The radar chart illustrates the relative performance 

of the three methods across four main metrics—

accuracy, precision, recall, and f1-score—using a 

normalized scale of 0–1. 

The EXIF-only method occupies the maximum 

area across all four metrics (value of 1.00 on every 

axis), indicating perfect performance on the test 

dataset. This condition is consistent with the results 

from the previous tables and bar charts, which showed 

that metadata-based identification in this dataset 

leveraged explicit attributes such as *Model* and 

*Software*, making class separation straightforward. 

Nevertheless, this ideal performance is highly 

dependent on the integrity of the metadata, meaning its 

robustness against manipulation cannot be guaranteed. 

The CNN method occupies a much smaller area, 

with relatively better precision (0.58) compared to 

recall (0.24) and f1-score (0.14), and an overall low 

accuracy (0.21). This pattern illustrates that the model 

tends to make correct predictions when it assigns a 

class but fails to capture many positive examples that 

should have been correctly classified. This is consistent 

with the phenomenon of overfitting and the limitations 

of the training data that were previously identified. 

The PRNU method occupies the smallest area in the 

diagram, with estimated values around 0.10–0.15 

across all metrics. This profile reflects the low 

correlation scores obtained during testing, caused by 

the limited number of templates per device and the 

effects of image post-processing. The low and uniform 

distribution across all metrics demonstrates that, under 

the current testing configuration, this method is not yet 

capable of providing effective class separation. 

Visually, the distinct radar shapes reflect the unique 

strengths and weaknesses of each method: EXIF-only 

excels but is forensically fragile, CNN has potential for 

adaptation based on visual content but requires 

enhanced data and architecture, while PRNU 

theoretically offers strong sensor-based validation but 

requires technical optimization to achieve significant 

performance. Integrating all three methods in a 

multimodal manner has the potential to produce a more 

balanced radar shape with broader coverage across all 

metrics, thereby strengthening the reliability of device 

identification in the context of digital forensics. 

4. Conclusions and Suggestions 

Based on the experimental results, it can be 

concluded that each method has its own strengths and 

limitations in the context of digital image source device 

identification. The EXIF-only approach demonstrated 

very high accuracy under conditions of intact metadata, 

but its performance is highly fragile when the metadata 

is manipulated or removed. The visual content-based 

CNN has the potential to serve as an alternative when 

metadata is unavailable, but it requires a larger dataset, 

pretraining, and data augmentation to achieve optimal 

performance. PRNU is theoretically resistant to 

metadata manipulation because it relies on the unique 

patterns of camera sensors; however, under the current 

experimental configuration, its performance was low 

due to the limited number of template images and data 

quality issues. Considering these characteristics, a 

multimodal approach that integrates EXIF, CNN, and 

PRNU is regarded as the most promising solution to 

produce a more robust and reliable device 

identification system in real-world digital forensic 

scenarios. 

Based on the findings of this study, several 

development and improvement steps can be undertaken 

to enhance the effectiveness of the methods: 

1. For EXIF-only: Develop metadata 

manipulation detection mechanisms, such as 
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cross-attribute consistency checks and 

anomaly pattern detection, so that the system 

does not rely solely on explicit information 

that is vulnerable to alteration. 

2. For CNN: Apply transfer learning using 

pretrained models and employ diverse data 

augmentation techniques to improve 

generalization capability, particularly in 

distinguishing devices with similar visual 

patterns. 

3. For PRNU: Increase the number and quality 

of template images per device and utilize 

uncompressed or minimally compressed 

images to minimize the degradation of sensor 

noise patterns. 

4. For Integration: Implement decision-level 

fusion that combines the outputs of EXIF, 

CNN, and PRNU, accompanied by 

consistency checks between metadata and 

visual content, to strengthen the reliability of 

the system when dealing with various data 

conditions in digital forensic practice. 
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