

Jurnal Sisfotek Global

ISSN (Online): 2721 - 3161, ISSN (Print): 2088 – 1762
DOI: http://dx.doi.org/10.38101/sisfotek.v13i1.2656

Vol. 13, No. 1, March 2023, pp. 28-34

28

ANALYSIS OF APPLICATION PERFORMANCE TESTING USING

LOAD TESTING AND STRESS TESTING METHODS IN API SERVICE

Mokhamd Hendayun1, Arief Ginanjar2 & Yoan Ihsan3

1,2,3 Langlangbuana University, Bandung, Indonesia, 40261

E-mail: 1hendayun@unla.ac.id, 2arief.ginanjar@unla.ac.id, 3ihsanyoan11@gmail.com

ARTICLE HISTORY

Received : February 27th, 2023
Revised : March 27th, 2023
Accepted :March 30th, 2023

KEYWORDS

Performance Analysis
Performance Testing
Load Testing
Blackbox Testing
Stress Testing

ABSTRACT

Testing an application is an important thing to do in software development.

However, there are some tests that are sometimes missed after application

development has been completed, such as performance testing. Performance

testing is a type of test to ensure software will work properly under the

expected workload. When performance testing is important to ensure that the

functional needs of the system are running well. To ensure that the business

objectives of the system are satisfactory and according to user needs can be

done using Black Box Method. After ensuring the final results meet the

specifications of the system needs, performance testing can be carried out. In

performance testing, a load and stress testing methods are used to test the

system, so as to be able to validate system performance are correct and

determine the operating capacity of the system, with load limit at the break

threshold and above the break threshold. This test is carried out to help

determine how software can act well when accessed by several users together

with a lot of data. This study conduct analyze the behavior of the system in the

server environment that currently running and then optimize the configuration

of the service and server to achieve concurrent users with 500 users at a time

with jmeter as a performance test tools.

1. Introduction

1.1 Background

API Service for vehicle financing submission is

a service for vehicle financing request applications

developed in Bandung. The API function in this

application is useful as a liaison between application

to database and connecting between platforms. API’s

play an important role in the availability and speed of

data access required in applications. The application is

commonly used for company operations, which means

that the application will be used frequently in daily

operation. With many transaction processes carried

out, it’s must be supported by an adequate system.

Some systems often not pay attention to the

performance of the system being developed, so what

should be a system that helps in simplifying and

speeding up a job actually does not have that impact

at all due to slow application performance.

Performance testing on an application system is

essential to find an error. This test can be said to be

good because it has the possibility to find a lack that

not revealed in functional test. A successful test when

the test can unpack an error that was not originally

found. The main purpose of this testing it can

systematically dismantle the types of errors with

minimum effort and time. Based on the problems

above, it is necessary to test and measure how many

limits on users who can access the process in the same

time simultaneously parallel, as well as resource

consumption when carrying out this processes with a

certain number of concurrent users, so that developers

can perform tuning up configuration related to the

performance of an application. Techniques that can be

used to conduct testing are load and stress testing

using the Black Box method. Research that

specifically studies application performance is still

very rare, therefore researchers hope that this paper

will become one of the ongoing studies for further

research.

1.2 Research Objectives

Purpose of this research is to analyze the API

service performance to find out the time and resource

consumption, conditions and ability of the service to

handle requests simultaneously with certain

concurrent users. Analysis is carried out by evaluating

loading times, server resource usage, and errors found

mailto:3namez@domain.edu

29

based on service responses and service logs so that

they can provide an appropriate configuration model

to optimize system performance [1]. This study

produce configuration model based on the test results;

create a pros and cons analysis of the errors found. In

addition, service performance analysis is also carried

out and create the server environment had a recovery

capabilities so that it can perform system

enhancements during bottlenecks or server crashes.

1.3 Research Scoping

In this research, the researchers tried to apply the

following limitations of the problem:

 The research only focuses on testing application

performance with load testing and stress testing.

 Testing using black box testing without knowing

the internal structure of the program.

 The API service tests were performed on an

architecture consisting of the following server

specifications; Processor: 4 Cores, RAM: 8Gb,

Storage: 160Gb, OS : Ubuntu 18.04

 The application and database install in the same

server.

 The test was performed using the open source

JMetter tool which was run on the following

hardware specifications; Processor: 2 Cores,

RAM: 8Gb, Storage: SSD 128Gb, OS : Ubuntu

18.04.

 Test using a virtual user with the same request.

 The test targeted max 500 concurrent users.

 Optimization is done only in the configuration of

the service application and web service.

2. Methodology

2.1 Performance Testing

 Application testing consists of four elements:

functional testing, compatibility testing, usability

testing, and performance testing. If the software

quality standard is compared to the ISO 25010

standard, the application should be tested for

functionality, compatibility, usability, and

performance.[2] Another definition of performance

testing is a type of testing to ensure that software is

functioning properly under the expected workload.

The main goal is not to find bugs but to eliminate

performance bottlenecks [3]. The focus of the

performance test:

 Speed - determines whether the application

responds fast enough.

 Scalability - determines whether the maximum

number of user loads can be handled

 Stability - determines whether the application is

stable with various loads.

When dispatch performance testing, there are 6

stages, namely the stages of project assessment,

planning, scripting, test execution, results analysis,

and reporting [4].

Figure 1 Performance Test as part Software Test [5]

2.2 Load and Stress Testing Methods

Method used to implement performance testing is

load and stress testing. Load testing required to know

the software solution will work under the real load,

while stress test are needed to test stability and

reliability of the system or it can be called as testing

system durability [6].

Load testing is a performance testing technique

that measures the response of a system under various

load conditions. This test helps determine how the

software behaves when multiple users are using the

software at the same time. Load testing is required to

simulate concurrent site/site usage [7]. Stress testing

is a performance testing technique that uses virtual

users who exceed the maximum number until

system/application downtime occurs and is typically

used for a longer period of time.

Blackbox testing is the functional testing of

software without knowing the internal structure of the

program. This test is important to do so that there are

no errors in the flow of the program that has been

created. Black Box Testing focuses on the functional

specifications of the software, the set of input

conditions and performs tests on the functional of the

program [8].

2.3 Testing Tools

 Apache JMeter can be used to test performance

on both static and dynamic resources, dynamic web

applications. [9] Dynamic is used as a testing tool

because it has many features that can be used

according to testing methods, including varied

reporting so that it can make it easier to read and

analyze the results of the test.

 Application Performance Monitoring (APM)

refers to managing the performance of a software

application to ensure the expected level of service, as

measured by performance metrics and user experience

monitoring. The APM solution aims to detect and

determine application performance issues before users

are actually impacted by them [10].

 The APM used as an application performance

monitoring tool is Dynatrace. APM is needed to help

analyze performance with several features that can

30

provide information on where and when the

application runs smoothly or slowly. The selection of

dynatrace as an APM is due to the fairly complete

features where all resources can be controlled and the

experience of testers using Dynatrace in monitoring

performance and reporting that is easy to understand

[11].

2.4 Unit Testing

Creating a test plan, what is done to divide the

API Service in modules based on the main functions

and roles of module? These modules will be tested on

the test run. Below are the users who use the

application by this case study; Authentication,

Marketing Officer, Branch Manager and Checker.

Module division is based on the user or user of

the application. The number of API endpoints in each

module can be seen in the table on the number of

modules to be tested.

Table 1. API module endpoint to be test.

No. Test module
Number of API

endpoints

1 Authentication 1

2 Marketing Officer 2

3 Branch Manager 2

4 Checker 1

Total number of endpoints to test 6

3. Results and Discussion

3.1 Testing Result

Based on test results of six endpoints with

concurrent user 500, it was obtained as follows:

 API Login Testing Result

Based on the results of three login tests, a

summary was obtained as follows:

Figure 2 Testing Result based on success and failed

access to API service.

As shown in Figure 2, this figure reveals

information about the number of concurrent users who

successfully accessed the API service function and

who failed to access from the first try to the third try.

Of course with some adjustments in the configuration

file to achieve a 100% success level when accessing

this function of API service.

Figure 3 Testing Result based on min, max and

average loading time access to API Service.

Figure 4 Testing Result based on CPU and RAM

resource used to API Service.

As it can be seen in figure 3 and figure 4,

average loading time, max loading time, min loading

time, CPU and memory there is a fairly high

comparison, this happen because the loading time is

faster and the first test recorded 16% sample error

which means there are 80 users out of a total of 500

users with a response below one seconds. Its affects

results of loading time report.

Then in the figure 4 it shown CPU and memory

usage is higher because in the first test only one

service runs and the next test runs two services, which

affects CPU and memory consumption, it’s also found

something catchy on second attempt that CPU utility

higher than RAM utility, it’s mean that CPU more

busy than RAM, that’s look good there no bottleneck

on this process.

Figure 5 When the test to API Service failed it will

show this error trace.

31

As shown in figure 5 the first test was failed and

this show obtained sample, then tracing found an error

on first request in the service log due to connection

timeout between the service and the database. While

here in figure 6 show there are 80 failed requests

found in nginx web service log because service cannot

respond to request.

Figure 6 Testing Result to API Service failed will

show log cannot respond request in nginx.

From the error found like show in figure 5 and

figure 6, then researcher does some improvements or

optimizations were made to the configuration of the

nginx web service and application service, below are

configuration code addition provided as follows:

1. Service configuration .
Server:

Port: 8080

Tomcat:

Threads:

max: 500

connection-timeout: 60s

2. Implementation of motode load balancing
upstream backend {

 server ip:8080;

 server ip:8081;

}

server {

 location / {

 proxy_pass: http://backend;

 }

}

After implementation of two technical

suggestions on the second and third attempts, no

request failed was found.

 Input Consumer API

Based on the results of three times testing save

consumer data obtained a summary as follows.

Figure 7 Testing results to insert data API service on

success attempt.

Figure 8 Testing Results to Insert Data API Service on

min, max and average loading.

Figure 9 Testing Results to Insert Data API Service on

CPU and RAM utility.

As seen on figure 7, figure 8 and figure 9, It can

be seen in the average loading time, max loading time,

min loading time, CPU and memory are quite stable,

max loading time reaches 13 second due to the

asynchronous process on the service waiting for the

request that finishes processing first, but no request is

failed.
As shown in Figure 9, in the first test, the CPU

consumption rate was 19% and RAM was 53%, then

in the second test, CPU was 18% and RAM was 64%,

then in the third test, CPU was 19% and RAM was

64%, this indicates the insert function in API Service

is stable.

 Update Data API BM

Based on the results of three update data to BM

proceeding tests, the data obtained a summary as

follows on figure 10.

Figure 10 Testing results to update data API service

on success attempt.

32

Figure 11 Testing results to update data API service

on min, max and average load.

Figure 12 Testing results to update data API service

on CPU and RAM utility.

As shown on figure 10, figure 11 and figure 12,

It can be seen the average loading time between 2.959

to 3.58 second, max loading time between 4.617 to

5.491 second, and min loading time between 0.218 to

0.184 second, while in CPU utility reach between

10% to 12% of resource and memory between 64%

to 68% of resource, this information show how quite

stable on the test, max loading time reaches five

second due to the asynchronous process on the service

waiting for the request to finish processing, but no

request failed.

 Update Data Approve API

Based on the results of three examination update

data approve by BM, the data obtained a summary

shown in figure 13, figure 14 and figure 15 as follows.

Figure 13 Testing results to update data approve API

service on success attempt.

Figure 14 Testing results to update data approve API

service on min, max and average load.

Figure 15 Testing results to update data approve API

service on CPU and RAM utility

It shown that the average loading time, max

loading time, min loading time, CPU and memory are

quite stable, max loading time reaches average five

second due to the asynchronous process on the

service waiting for the request to finish processing,

but no request failed.

 Update Data Reject API

Based on the results of three testing update data

reject by BM, data obtained as shown in figure 16,

figure 17 and figure 18 as follows.

Figure 16 Testing results to update data reject API

service on success attempt.

As happened in the previous API Service test,

even in this test the observational data is still focused

on the results of failed or successful tests, minimum,

maximum and average loading as well as the

percentage of CPU and RAM usage. With the results

shown in Figure 16, Figure 17 and Figure 18 which

shows a stable service function. It can be seen in the

33

average loading time, max loading time, min loading

time, CPU and RAM are quite stable, max loading

time reaches around five second due to the

asynchronous process on the service waiting for the

request to finish processing, but no request failed.

Figure 17 Testing results to update data reject API

service on min, max and average load.

Figure 18 Testing results to update data reject API

service on CPU and RAM utility

 Update Data Precede Checker API

The results of three times of precede checker

testing, the data obtained a summary as follows.

Figure 19 Testing results to update data precede API

service on success attempt.

Figure 17 Testing results to update data precede API

service on min, max and average load time.

Figure 21 Testing results to update data precede

checker API service on CPU and RAM utility

It seen in the average loading time, maximum

loading time, minimum loading time, CPU and

memory are quite stable, max loading time reaches

eight second due to the asynchronous process on the

service waited for the request that finishes processing,

but no request are failed.

3.2 Technical Advice

Based on test results analysis in the first

experiment on the login endpoint which was found 82

samples have failed, resulting in several technical

suggestions being carried to improve performance,

after implementation of technical advice in the next

test did not get a failed response. Technical advice

implemented as follows:

 Configure connection timeout on the web service

application.

This suggestion is given from checked and

analysis on Dynatrace results and found 81 samples

contained in 1 request with a response of “500 internal

server errors” on the application layer with this

keywords error “ClientAbortException”

 Cause:

The error is caused by a connection timeout in

the web service application.

 Reference:

https://stackoverflow.com/questions/43825908/o

rg-apache-catalina-connector-

clientabortexception-java-io-ioexception-apr-err

 Implementation:
Server:

Port: 8080

Tomcat:

Threads:

max: 500

connection-timeout: 60s

 Impact:

Response of some requests may take longer

because the connection or processes are full.

 Network concept configuration with load

balancing

This suggestion above given from Dynatrace

results and found an error on the transport layer,

34

namely the proxy pass port 80 to the application port

8080 has an error because the application does not

respond

 Cause: The error happen by possibility that the

app is down or full of connection, so it can't be

called.

 Solution: Distribute workloads across two or

more network connections in a balanced manner

so that work can run optimally and not overload

on any of the connection paths.

Load balancer is recommended for each service

run on a different server or resource with optimal

resource usage and harmonize by it.

Here's the suggested topology:

 Implementation:

upstream backend {

 server ip:8080;

 server ip:8081;

}

server {

 location / {

proxy_pass: http://backend;

 }

}

 Impact:

Each workload is distributed across multiple

services.

4. Conclusion

Based on research results that have been

described in the previous path, it can be concluded

that service with a running configuration cannot meet

the expectations of requests with concurrent 500

users, so it is necessary to implement technical advice

from analysis results in order to meet expectations and

optimize performance. Server resources are still

available when there a request with a concurrent of

500 users, but there are failed requests in several

requests which mean it failed and not limited by

resource specifications but requires optimization from

the service side. The service does not show

bottlenecks or downs when tested with 500 users

concurrent request, for failed responses still occur at

the beginning of the test because they have not

implemented advance configuration. This is not

because the service is unavailable so it requires

someone to restart the service.

5. Acknowledgement

This research was supported by Langlangbuana

University.

References

[1] Ginanjar, Arief, and Mokhamad Hendayun.

"Spring framework reliability investigation

against database bridging layer using Java

platform." Procedia Computer Science 161

(2019): 1036-1045.

[2] David, Assaf Ben. "Mobile application testing

(best practices to ensure quality)." (2011).

[3] Weyuker, Elaine J., and Filippos I. Vokolos.

"Experience with performance testing of

software systems: issues, an approach, and case

study." IEEE transactions on software

engineering 26.12 (2000): 1147-1156.

[4] Du Plessis, Marina. "The role of knowledge

management in innovation." Journal of

knowledge management (2007).

[5] Vokolos, Filippos I., and Elaine J. Weyuker.

"Performance testing of software

systems." Proceedings of the 1st International

Workshop on Software and Performance. 1998..

[6] Erinle, Bayo. Performance Testing with JMeter

3. Packt Publishing Ltd, 2017.

[7] Permatasari, Desy Intan. "Pengujian aplikasi

menggunakan metode load testing dengan

apache jmeter pada sistem informasi

pertanian." JUSTIN (Jurnal Sistem dan

Teknologi Informasi) 8.1 (2020): 135-139..

[8] Abbas, Rabiya, Zainab Sultan, and Shahid Nazir

Bhatti. "Comparative analysis of automated load

testing tools: Apache jmeter, microsoft visual

studio (tfs), loadrunner, siege." 2017

international conference on communication

technologies (comtech). IEEE, 2017.

[10] Rosa, Ariani Sukamto. "Rekayasa perangkat

lunak terstruktur dan berorientasi objek." (2016).

[11] Willnecker, Felix, et al. "Using dynatrace

monitoring data for generating performance

models of java ee applications." Proceedings of

the 6th ACM/SPEC International Conference on

Performance Engineering. 2015.

