Optimasi Model CatBoost dengan Feature Selection dan Hyperparameter Tuning untuk Prediksi Nasabah Bank Potensial
Abstract
Persaingan ketat di industri perbankan menuntut kemampuan memprediksi nasabah potensial deposito secara akurat dan efisien. Penelitian ini bertujuan meningkatkan akurasi prediksi nasabah potensial deposito dengan mengurangi kompleksitas komputasi dan dimensionalitas data, terutama pada penanganan fitur kategorik. Metode yang diusulkan menggunakan algoritma CatBoost yang mampu menangani data kategorik secara efisien tanpa memerlukan one-hot encoding. Feature selection berbasis feature importance diaplikasikan untuk memilih fitur paling relevan, sementara hyperparameter tuning dengan Hyperopt digunakan untuk mengoptimalkan parameter model CatBoost. Eksperimen pada dataset Bank Marketing dengan 45.211 baris data dan 16 fitur menunjukkan kombinasi CatBoost, feature selection, dan hyperparameter tuning mampu mencapai akurasi 92,8%, sensitivitas 91,0%, dan spesifisitas 94,8% dalam memprediksi nasabah potensial deposito. Pendekatan ini terbukti efektif mengurangi kompleksitas komputasi sekaligus meningkatkan akurasi prediksi nasabah potensial deposito.
Full Text:
PDFDOI: http://dx.doi.org/10.38101/ajcsr.v6i2.15656
Refbacks
- There are currently no refbacks.
Academic Journal of Computer Science Research
Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id
INDEXED BY:

This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/AJCSR/index.