Implementation of K-means Clustering Algorithm for the Indonesian Stock Exchange

Bakti Siregar, Yosia Yosia

Abstract


In the dynamic field of financial markets, effective analysis and understanding of stock market behavior are very crucial for investors, analysts, and policymakers. This study investigates the implementation of the K-means algorithm for clustering stocks listed on the Indonesian Stock Exchange (IDX). The main objectives of this research include exploring IDX's clustering patterns, identifying groups based on their trading characteristics, and evaluating algorithm performance. Some challenging parts have been addressed, such as data quality, feature selection, determining the optimal number of clusters, scalability, interpretability, and evaluation. Precise data preprocessing, feature engineering, and algorithm optimization provide insight into the clustering structure of the Indonesian stock market, helping investors in portfolio diversification, risk management, and strategic decision-making. The results show the potential of the K-means algorithm in thoroughly uncovering important patterns on the IDX, thereby contributing to the advancement of market analysis methodologies adapted to the Indonesian financial environment.

Keywords


Stock Market; Machine Learning; K-means Clustering

Full Text:

PDF

References


A. Satar, M. Al Musadieq, B. Hutahayan, and others, “Enhancing Sustainable Competitive Advantage: The Role of Dynamic Capability and Organizational Agility in Technology and Knowledge Management: Indonesian Stock Exchange Evidence,” International Journal of Operations and Quantitative Management, vol. 29, no. 2, 2023.

H. Padmanaban, “Navigating the Role of Reference Data in Financial Data Analysis: Addressing Challenges and Seizing Opportunities,” Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, vol. 2, no. 1, pp. 69–78, 2024.

M. Disli, R. Nagayev, K. Salim, S. K. Rizkiah, and A. F. Aysan, “In search of safe haven assets during COVID-19 pandemic: An empirical analysis of different investor types,” Res Int Bus Finance, vol. 58, p. 101461, 2021.

R. Raja, “Time-Series Clustering for Improving Predictions on Smart Home Appliances,” 2023.

S. Wang et al., “Advances in data preprocessing for biomedical data fusion: An overview of the methods, challenges, and prospects,” Information Fusion, vol. 76, pp. 376–421, 2021.

H. Rafiee, M. Aminizadeh, E. M. Hosseini, H. Aghasafari, and A. Mohammadi, “A cluster analysis on the energy use indicators and carbon footprint of irrigated wheat cropping systems,” Sustainability, vol. 14, no. 7, p. 4014, 2022.

A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Heming, “K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data,” Inf Sci (N Y), vol. 622, pp. 178–210, 2023.

A. E. Ezugwu et al., “A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects,” Eng Appl Artif Intell, vol. 110, p. 104743, 2022.

M. M. Kumbure, C. Lohrmann, P. Luukka, and J. Porras, “Machine learning techniques and data for stock market forecasting: A literature review,” Expert Syst Appl, vol. 197, p. 116659, 2022.

T. O. Kehinde, F. T. S. Chan, and S. H. Chung, “Scientometric review and analysis of recent approaches to stock market forecasting: Two decades survey,” Expert Syst Appl, vol. 213, p. 119299, 2023.

R. H. Pasaribu, “KAJIAN TINGKAT EFISIENSI PASAR MODAL BENTUK LEMAH DI BURSA EFEK INDONESIA PADA PERIODE SEBELUM DAN SELAMA PANDEMIC COVID-19,” Jurnal Ekonomi dan Manajemen, vol. 1, no. 2, pp. 90–101, 2022.

B. Siregar, F. A. Pangruruk, and P. A. Widjaja, “Perbandingan Berbagai Model Peramalan Indeks Harga Saham Gabungan (IHSG) di Masa Pandemi Covid-19,” Jurnal Multidisiplin Madani, vol. 2, no. 2, pp. 1035–1046, 2022.

R. Antika, N. Satyahadewi, and H. Perdana, “ANALISIS PEMBENTUKAN PORTOFOLIO OPTIMAL MENGGUNAKAN MODEL BLACK LITTERMAN DENGAN PENDEKATAN ARCH/GARCH,” Equator: Journal of Mathematical and Statistical Sciences, vol. 1, no. 1, pp. 31–39, 2022.

I. H. Sarker, “Machine learning: Algorithms, real-world applications and research directions,” SN Comput Sci, vol. 2, no. 3, p. 160, 2021.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006, doi: 10.1016/j.neucom.2005.12.126.

M. Somvanshi, P. Chavan, S. Tambade, and S. V. Shinde, “A review of machine learning techniques using decision tree and support vector machine,” in 2016 International Conference on Computing Communication Control and automation (ICCUBEA), IEEE, Aug. 2016, pp. 1–7. doi: 10.1109/ICCUBEA.2016.7860040.

R. Thupae, B. Isong, N. Gasela, and A. M. Abu-Mahfouz, “Machine Learning Techniques for Traffic Identification and Classifiacation in SDWSN: A Survey,” in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, IEEE, Oct. 2018, pp. 4645–4650. doi: 10.1109/IECON.2018.8591178.

F. S. B. F. S. Board, Artificial intelligence and machine learning in financial services: Market developments and financial stability implications. Financial Stability Board, 2017.

S. Das and M. J. Nene, “A survey on types of machine learning techniques in intrusion prevention systems,” in 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), IEEE, Mar. 2017, pp. 2296–2299. doi: 10.1109/WiSPNET.2017.8300169.

L. Li, J. Wang, and X. Li, “Efficiency analysis of machine learning intelligent investment based on K-means algorithm,” Ieee Access, vol. 8, pp. 147463–147470, 2020.

S. Nanjundan, S. Sankaran, C. R. Arjun, and G. P. Anand, “Identifying the number of clusters for K-Means: A hypersphere density based approach,” arXiv preprint arXiv:1912.00643, 2019.

D. N. Sari and I. Yunita, “TINGKAT KEPARAHAN DAN RISIKO PENYEBARAN COVID-19 DI INDONESIA DENGAN MENGGUNAKAN K-MEANS CLUSTERING,” Seminar Nasional Official Statistics, vol. 2020, no. 1, pp. 210–216, Jan. 2021, doi: 10.34123/semnasoffstat.v2020i1.706.

N. Ulinnuha and S. A. Sholihah, “Analisis Cluster Untuk Pemetaan Data Kasus Covid-19 Di Indonesia Menggunakan K-Means,” Jurnal MSA (Matematika dan Statistika serta Aplikasinya), vol. 9, no. 2, pp. 27–31, 2021.

A. F. Riyadhi and R. M. Atok, “Impact of COVID-19 on Indonesia stock portfolio allocation based on a technical & fundamental approach using a machine learning algorithm,” F1000Res, vol. 12, p. 1475, 2023.

S. Wiersma, T. Just, and M. Heinrich, “Segmenting German housing markets using principal component and cluster analyses,” International Journal of Housing Markets and Analysis, vol. 15, no. 3, pp. 548–578, 2022.

J. Höhler and A. O. Lansink, “Measuring the impact of COVID-19 on stock prices and profits in the food supply chain,” Agribusiness, vol. 37, no. 1, pp. 171–186, 2021.

C. Iman, F. N. Sari, and N. Pujiati, “Pengaruh likuiditas dan profitabilitas terhadap nilai perusahaan,” Perspektif: Jurnal Ekonomi dan Manajemen Akademi Bina Sarana Informatika, vol. 19, no. 2, pp. 191–198, 2021.

R. Handayani, S. Suhendro, and E. Masitoh, “Pengaruh profitabilitas, debt to equity ratio, price to eraning ratio dan kapitalisasi pasar terhadap return saham,” INOVASI, vol. 18, no. 1, pp. 127–138, 2022.

M. I. N. Rais, “PENENTUAN SEGMENTASI KONSUMEN PADA MARKETING DATA IFOOD MENGGUNAKAN METODE K–MEANS CLUSTERING,” Fakultas Teknik Unpas, 2022.




DOI: http://dx.doi.org/10.38101/sisfotek.v14i1.10860

Refbacks

  • There are currently no refbacks.


 

JURNAL SISFOTEK GLOBAL

Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id

INDEXED BY:

   


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.