Differentiate the Varieties of Plants Using Leaf Images with YOLOv4
Abstract
Keywords
Full Text:
PDFReferences
P. A. Widjaja, R. Theo, and K. Liem, “Penggunaan YOLOv4 Untuk Menentukan Lokasi Dosen Dan Mahasiswa Dengan Menggunakan CCTV,” Infinity, vol. 2, no. 1, Oct. 2022, doi: 10.47178/infinity.v2i1.1643.
P. A. Widjaja and J. R. Leonesta, “Determining Mango Plant Types Using YOLOv4,” Formosa Journal of Science and Technology, vol. 1, no. 8, pp. 1143–1150, Dec. 2022, doi: 10.55927/fjst.v1i8.2155.
P. A. Widjaja and J. R. Leonesta, “Differentiate a Health and Sick of Mango Leaves Using YOLOv4,” Formosa Journal of Science and Technology, vol. 2, no. 7, pp. 1749–1758, Jul. 2023, doi: 10.55927/fjst.v2i7.4792.
I. Perlindungan and R. Risnawati, “Pengenalan Tanaman cabai dengan Teknik Klasifikasi Menggunakan Metode CNN,” in Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya, 2020, pp. 15–22.
R. Pujiati and N. Rochmawati, “Identifikasi Citra Daun Tanaman Herbal Menggunakan Metode Convolutional Neural Network (CNN),” Journal of Informatics and Computer Science (JINACS), vol. 3, no. 03, pp. 351–357, Jan. 2022, doi: 10.26740/jinacs.v3n03.p351-357.
F. Felix, S. Faisal, T. F. M. Butarbutar, and P. Sirait, “Implementasi CNN dan SVM untuk Identifikasi Penyakit Tomat via Daun,” Jurnal SIFO Mikroskil, vol. 20, no. 2, pp. 117–134, 2019.
S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach,” Electronics (Basel), vol. 10, no. 12, p. 1388, Jun. 2021, doi: 10.3390/electronics10121388.
P. Deepalakshmi, K. Lavanya, P. N. Srinivasu, and others, “Plant leaf disease detection using CNN algorithm,” International Journal of Information System Modeling and Design (IJISMD), vol. 12, no. 1, pp. 1–21, 2021.
W. Fang, L. Wang, and P. Ren, “Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments,” IEEE Access, vol. 8, pp. 1935–1944, 2020, doi: 10.1109/ACCESS.2019.2961959.
M. P. Mathew and T. Y. Mahesh, “Leaf-based disease detection in bell pepper plant using YOLO v5,” Signal Image Video Process, vol. 16, no. 3, pp. 841–847, Apr. 2022, doi: 10.1007/s11760-021-02024-y.
A. Morbekar, A. Parihar, and R. Jadhav, “Crop Disease Detection Using YOLO,” in 2020 International Conference for Emerging Technology (INCET), IEEE, Jun. 2020, pp. 1–5. doi: 10.1109/INCET49848.2020.9153986.
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.
J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.
P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo Algorithm Developments,” Procedia Comput Sci, vol. 199, pp. 1066–1073, 2022, doi: 10.1016/j.procs.2022.01.135.
J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS,” Mach Learn Knowl Extr, vol. 5, no. 4, pp. 1680–1716, Nov. 2023, doi: 10.3390/make5040083.
C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7464–7475.
M. J. A. Soeb et al., “Tea leaf disease detection and identification based on YOLOv7 (YOLO-T),” Sci Rep, vol. 13, no. 1, p. 6078, 2023.
DOI: http://dx.doi.org/10.38101/sisfotek.v14i1.10864
Refbacks
- There are currently no refbacks.
JURNAL SISFOTEK GLOBAL
Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id
INDEXED BY:

This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.