Implementation Machine Learning of K-Means Clustering Method and Linear Regression for Detecting the Risk of Tuberculosis Spread in Bangka Regency

Nurhaeka Tou, Putri Mentari Endraswari, Syafiranur Iftizam, Itlahtul Mu’anah

Abstract


The number of tuberculosis (TB) sufferers in Bangka Regency tends to increase and is becoming a very serious public health problem. In 2023, there will be around 331,581 residents of Bangka Regency, with around 1,489 of them suffering from TB. The high number of TB cases in Bangka Regency requires comprehensive monitoring. Surveillance can be carried out by grouping TB cases by region. One clustering method is K-Means which groups data based on similar criteria. Researchers also used the Linear Regression method to predict the effect of population density on increasing TB prevalence. This research was conducted to cluster the distribution pattern of TB by region and identify the influence of population density variables on the increase in TB. Based on the results of the K-Means method analysis by looking at the Performance Davies Bouldin-Index (Dbi) test, researchers obtained a pattern of TB distribution which was categorized into: Areas with High Prevalence (Sungailiat), Medium Prevalence (Belinyu and West Mendo) and Low Prevalence (Bakam, Merawang, Pemali, Pudding Besar, and Riau Silip). Meanwhile, the prediction results show that there is a positive influence of 81% of the population density variable on increasing the number of TB spreads and 19% is influenced by other variables. The results of this research can be used as a reference for the Bangka District Health Service to assist decision-making in preventing an increase in TB cases.

Keywords


Clustering; K-Means; Linear Regression; Prediction; Tuberculosis;

Full Text:

PDF

References


T. K. A. Teibo, R. L. de P. Andrade, R. J. Rosa, R. B. V. Tavares, T. Z. Berra, and R. A. Arcêncio, “Geo Spatial High Risk Clusters of Tuberculosis in the Global General Population: a Systematic Review,” BMC Public Health, vol. 23, no. 1, pp. 1–10, 2023.

L. Dodo, N. S. Fatonah, G. Firmansyah, and H. Akbar, “Analysis of Tuberculosis Disease Case Growth From Medical Record Data, Viewed Through Clustering Algorithms (Case Study: Islamic Hospital Bogor),” J. Indones. Sos. Sains, vol. 4, no. 09, pp. 915–927, 2023.

R. S. Wardani, Purwanto, Sayono, and A. Paramananda, “Clustering Tuberculosis in Children Using K-Means Based on Geographic Information System,” in AIP Conference Proceedings, 2019, vol. 2114.

S. Bagcchi, “WHO’s Global Tuberculosis Report 2022,” The Lancet Microbe, vol. 4, no. 1, p. e20, 2023.

P. A. Kusuma and A. U. Firmansyah, “Deteksi Penyebaran Penyakit Tuberkulosis dengan Algoritma K-Means Clustering Menggunakan Rapid Miner,” Teknol. Inform. dan Komput., vol. 8, no. 2, pp. 41–54, 2022.

Y. Yao et al., “Identification of spinal tuberculosis subphenotypes using routine clinical data: a study based on unsupervised machine learning,” Ann. Med., vol. 55, no. 2, p. , 2023.

R. Iman, B. Rahmat, and A. Junaidi, “Implementasi Algoritma K-Means dan Knearest Neighbors (KNN) Untuk Identifikasi Penyakit Tuberkulosis Pada Paru-Paru,” Publ. Tek. Inform. dan Jar., vol. 2, no. 3, pp. 12–25, 2024.

R. Afriansyah, D. Lanaya, L. Sari, M. Azrul, and M. Riyadi, “Perancangan Aplikasi Re-Tuberis (Remember Tuberculosis) Dalam Pelayanan Informasi Dan Kepatuhan Penggunaan Obat,” J. Manaj. Inf. Kesehat. Indones., vol. 11, no. 2, pp. 157–164, 2023.

Rudini, Helda, and M. Qomariah, “The Effect of Cadres Training on Competence Of Tuberculosis Health Cadres At The Muntok Health Center In West Bangka Regency,” Eduhealth, vol. 14, no. 02, pp. 1041–1047, 2023.

M. Kossakov, A. Mukasheva, G. Balbayev, S. Seidazimov, D. Mukammejanova, and M. Sydybayeva, “Quantitative Comparison of Machine Learning Clustering Methods for Tuberculosis Data Analysis,” Eng. Proc., vol. 60, no. 1, pp. 1–14, 2024.

F. N. R. Putri, N. C. H. Wibowo, and H. Mustofa, “Clustering of Tuberculosis and Normal Lungs Based on Image Segementation Results of Chan-Vese and Canny with K-Means,” Indones. J. Artif. Intell. Data Min., vol. 6, no. 1, p. 237, 2011.

R. N. Pratistha and B. Kristianto, “Implementasi Algoritma K-Means dalam Klasterisasi Kasus Stunting pada Balita di Desa Randudongkal,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 2, pp. 1193–1205, 2024.

P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Ilmu Komput., vol. 2, no. 1, pp. 20–33, 2023.

M. Ula, A. Zulfikri, A. F. Ulva, and R. R. Achmad, “Penerapan Machine Learning Clustering K-Means dan Linear Regression dalam Penentuan Tingkat Resiko Tuberkulosis Paru,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 336–348, 2023.

A. A. Lestar, M. R. Makful, and C. Okfriani, “Analisis Spasial Kepadatan Penduduk Terhadap Kasus Tuberkulosis di Provinsi Jawa Barat 2019-2021,” J. Cahaya Mandalika, pp. 577–584, 2021.




DOI: http://dx.doi.org/10.38101/sisfotek.v14i2.15658

Refbacks

  • There are currently no refbacks.


 

JURNAL SISFOTEK GLOBAL

Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id

INDEXED BY:

   


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.