Implementation Machine Learning of K-Means Clustering Method and Linear Regression for Detecting the Risk of Tuberculosis Spread in Bangka Regency
Abstract
Keywords
Full Text:
PDFReferences
T. K. A. Teibo, R. L. de P. Andrade, R. J. Rosa, R. B. V. Tavares, T. Z. Berra, and R. A. Arcêncio, “Geo Spatial High Risk Clusters of Tuberculosis in the Global General Population: a Systematic Review,” BMC Public Health, vol. 23, no. 1, pp. 1–10, 2023.
L. Dodo, N. S. Fatonah, G. Firmansyah, and H. Akbar, “Analysis of Tuberculosis Disease Case Growth From Medical Record Data, Viewed Through Clustering Algorithms (Case Study: Islamic Hospital Bogor),” J. Indones. Sos. Sains, vol. 4, no. 09, pp. 915–927, 2023.
R. S. Wardani, Purwanto, Sayono, and A. Paramananda, “Clustering Tuberculosis in Children Using K-Means Based on Geographic Information System,” in AIP Conference Proceedings, 2019, vol. 2114.
S. Bagcchi, “WHO’s Global Tuberculosis Report 2022,” The Lancet Microbe, vol. 4, no. 1, p. e20, 2023.
P. A. Kusuma and A. U. Firmansyah, “Deteksi Penyebaran Penyakit Tuberkulosis dengan Algoritma K-Means Clustering Menggunakan Rapid Miner,” Teknol. Inform. dan Komput., vol. 8, no. 2, pp. 41–54, 2022.
Y. Yao et al., “Identification of spinal tuberculosis subphenotypes using routine clinical data: a study based on unsupervised machine learning,” Ann. Med., vol. 55, no. 2, p. , 2023.
R. Iman, B. Rahmat, and A. Junaidi, “Implementasi Algoritma K-Means dan Knearest Neighbors (KNN) Untuk Identifikasi Penyakit Tuberkulosis Pada Paru-Paru,” Publ. Tek. Inform. dan Jar., vol. 2, no. 3, pp. 12–25, 2024.
R. Afriansyah, D. Lanaya, L. Sari, M. Azrul, and M. Riyadi, “Perancangan Aplikasi Re-Tuberis (Remember Tuberculosis) Dalam Pelayanan Informasi Dan Kepatuhan Penggunaan Obat,” J. Manaj. Inf. Kesehat. Indones., vol. 11, no. 2, pp. 157–164, 2023.
Rudini, Helda, and M. Qomariah, “The Effect of Cadres Training on Competence Of Tuberculosis Health Cadres At The Muntok Health Center In West Bangka Regency,” Eduhealth, vol. 14, no. 02, pp. 1041–1047, 2023.
M. Kossakov, A. Mukasheva, G. Balbayev, S. Seidazimov, D. Mukammejanova, and M. Sydybayeva, “Quantitative Comparison of Machine Learning Clustering Methods for Tuberculosis Data Analysis,” Eng. Proc., vol. 60, no. 1, pp. 1–14, 2024.
F. N. R. Putri, N. C. H. Wibowo, and H. Mustofa, “Clustering of Tuberculosis and Normal Lungs Based on Image Segementation Results of Chan-Vese and Canny with K-Means,” Indones. J. Artif. Intell. Data Min., vol. 6, no. 1, p. 237, 2011.
R. N. Pratistha and B. Kristianto, “Implementasi Algoritma K-Means dalam Klasterisasi Kasus Stunting pada Balita di Desa Randudongkal,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 2, pp. 1193–1205, 2024.
P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Ilmu Komput., vol. 2, no. 1, pp. 20–33, 2023.
M. Ula, A. Zulfikri, A. F. Ulva, and R. R. Achmad, “Penerapan Machine Learning Clustering K-Means dan Linear Regression dalam Penentuan Tingkat Resiko Tuberkulosis Paru,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 336–348, 2023.
A. A. Lestar, M. R. Makful, and C. Okfriani, “Analisis Spasial Kepadatan Penduduk Terhadap Kasus Tuberkulosis di Provinsi Jawa Barat 2019-2021,” J. Cahaya Mandalika, pp. 577–584, 2021.
DOI: http://dx.doi.org/10.38101/sisfotek.v14i2.15658
Refbacks
- There are currently no refbacks.
JURNAL SISFOTEK GLOBAL
Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id
INDEXED BY:

This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.