Comparison of the Performance of Multiple Linear Regression and Multi-Layer Perceptron Neural Network Algorithms in Predicting Drug Sales at Pharmacy XYZ

Danang Arifuddin, Kusrini Kusrini, Kusnawi Kusnawi

Abstract


The needs of better drugs management tool especially that can predict specific drugs consumption volume are needed by any healthcare facility including retail pharmacies. Thus, finding better prediction algorithm with suitable variable internally and externally becoming this research objectives. The research compares correlation score and histogram of each predictor variable with target variable and further input the selected variable into MLR and MLPNN algorithm to find recommended algorithm with better MSE and MAPE. The findings indicate that MLPNN with backpropagation method slightly outperforms MLR with ‘h-7’ as single input variable but with unstable predictions with lower MSE of 19588 and MAPE of 22,3%. While MLR's MSE of 22346,129 and MAPE of 25.4% with ‘h-7’ and ‘bm’ as input variable perform stable prediction. Finally, the research find ‘h-7’ is the most significant variable among other variables and both MLR and MLPNN are both need better improvement to perform drugs prediction analysis.

Keywords


Drug Sales Prediction; Machine Learning Algorithms; Multiple Linear Regression (MLR); Multi-Layer Perceptron Neural Network (MLPNN); Stock Management Optimization.

Full Text:

PDF

References


G. Emmanuel, Meyliana, A. N. Hidayanto, and H. Prabowo, “A Literature Review: Drug Supply Chain and Neural Networks,” in Proceeding - 6th International Conference on Information Technology, Information Systems and Electrical Engineering: Applying Data Sciences and Artificial Intelligence Technologies for Environmental Sustainability, ICITISEE 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 559–564. doi: 10.1109/ICITISEE57756.2022.10057939.

European Association of Hospital Pharmacists, “2019 EAHP Medicines Shortages Report,” 2019.

L. Hedman, “Global approaches to addressing shortages of essential medicines in health systems,” WHO Drug Information, vol. 30, no. 2, 2016.

N. Miljković et al., “Results of EAHP’s 2023 shortages survey,” European Journal of Hospital Pharmacy, 2024, doi: 10.1136/ejhpharm-2024-004090.

A. Nguyen, O. Bougacha, B. Lekens, S. Lamouri, and R. C. Couvreur, “On the use of logistics data to anticipate drugs shortages through,” in Procedia Computer Science, 2023. doi: 10.1016/j.procs.2023.01.371.

D. Anisya Farmaciawaty, M. Hasan Basri, A. Adiutama, F. Budyanto Widjaja, and I. Nurul Rachmania, “Inventory Level Improvement in Pharmacy Company Using Probabilistic EOQ Model and Two Echelon Inventory: A Case Study,” The Asian Journal of Technology Management, vol. 13, no. 3, pp. 229–242, 2020, doi: 10.12695/ajtm.2020.13.3.4.

S. Romano, H. Galante, D. Figueira, Z. Mendes, and A. T. Rodrigues, “Time-trend analysis of medicine sales and shortages during COVID-19 outbreak: Data from community pharmacies,” Research in Social and Administrative Pharmacy, vol. 17, no. 1, pp. 1876–1881, Jan. 2021, doi: 10.1016/J.SAPHARM.2020.05.024.

V. Reinstadler et al., “Monitoring drug consumption in Innsbruck during coronavirus disease 2019 (COVID-19) lockdown by wastewater analysis,” Science of the Total Environment, vol. 757, 2021, doi: 10.1016/j.scitotenv.2020.144006.

A. Gasparrini et al., “Mortality risk attributable to high and low ambient temperature: A multicountry observational study,” The Lancet, vol. 386, no. 9991, 2015, doi: 10.1016/S0140-6736(14)62114-0.

S. Cohen, W. J. Doyle, and A. Baum, “Socioeconomic status is associated with stress hormones,” Psychosom Med, vol. 68, no. 3, 2006, doi: 10.1097/01.psy.0000221236.37158.b9.

N. Tampati, Y. Melita Pranoto, T. Informasi, and I. Sains dan Teknologi Terpadu Surabaya Jl Ngagel Jaya Tengah No, “Prediksi Stok Obat pada Apotik Total Life Clinic Menggunakan Model Kombinasi Artificial Neural Network dan ARIMA,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 1, pp. 49–58, 2022, [Online]. Available: http://jurnal.mdp.ac.id

F. Khairati and H. Putra, “Prediksi Kuantitas Penggunaan Obat pada Layanan Kesehatan Menggunakan Algoritma Backpropagation Neural Network,” Jurnal Sistim Informasi dan Teknologi, pp. 128–135, Aug. 2022, doi: 10.37034/jsisfotek.v4i3.158.

R. Rushton et al., “Forecasting inventory for the state-wide pharmaceutical service of South Australia,” Procedia Comput Sci, vol. 219, pp. 1257–1264, Jan. 2023, doi: 10.1016/J.PROCS.2023.01.409.

R. Rathipriya, A. A. Abdul Rahman, S. Dhamodharavadhani, A. Meero, and G. Yoganandan, “Demand forecasting model for time-series pharmaceutical data using shallow and deep neural network model,” Neural Comput Appl, vol. 35, no. 2, pp. 1945–1957, Jan. 2023, doi: 10.1007/s00521-022-07889-9.

D. Kurniawan, Pengenalan Machine Learning dengan Python, 3rd ed. Jakarta: PT Elex Media Komputindo, 2022.

Larose, “Discovering Knowledge in Data: An Introduction to Data Mining,” 2005.

Kusrini and E. T. Luthfi, Algoritma Data Mining. Yogyakarta: C.V. ANDI OFFSET, 2009.

M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis, “Multilayer Perceptron dan Neural Networks Gambar 1: Umpan-maju multilayer jaringan saraf,” Wseas Transactions On Circuits And Systems, vol. 8, no. 7, 2009.

Q. Han, X. Xiao, S. Wang, W. Qin, C. Yu, and M. Liang, “Characterization of the effects of outliers on ComBat harmonization for removing inter-site data heterogeneity in multisite neuroimaging studies,” Front Neurosci, vol. 17, 2023, doi: 10.3389/fnins.2023.1146175.

Z. Šverko, M. Vrankić, S. Vlahinić, and P. Rogelj, “Complex Pearson Correlation Coefficient for EEG Connectivity Analysis,” Sensors, vol. 22, no. 4, Feb. 2022, doi: 10.3390/s22041477.

S. Rath, A. Tripathy, and A. R. Tripathy, “Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews, vol. 14, no. 5, 2020, doi: 10.1016/j.dsx.2020.07.045.

M. Desai and M. Shah, “An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN),” Clinical eHealth, vol. 4, pp. 1–11, 2021, doi: 10.1016/j.ceh.2020.11.002.

F. Altamevia and H. Oktafia Lingga Wijaya, “Analisis Pola Penjualan Obat di Apotek Srikandi Menggunakan Algoritma Supervised Learning,” Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 4, no. 1, pp. 170–176, 2023.

T. Filimonova, H. Samoylenko, A. Selivanova, Y. Yurchenko, and A. Parashchak, “Construction Of A Neural Network For Handwritten Digits Recognition Based On Tensorflow Library Applying An Error Backpropagation Algorithm,” Eastern-European Journal of Enterprise Technologies, vol. 6, no. 2(126), pp. 25–32, 2023, doi: 10.15587/1729-4061.2023.293682.




DOI: http://dx.doi.org/10.38101/sisfotek.v15i1.15822

Refbacks

  • There are currently no refbacks.


 

JURNAL SISFOTEK GLOBAL

Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id

INDEXED BY:

   


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.