Analysis of Sentiment Adiraku App Reviews on Google Play Store Using Vector Machine Support Algorithm and Naïve Bayes

Bayu Padilah, Adi Rizky Pratama, Ayu Ratna Juwita

Abstract


The Adiraku application is considered to be able to facilitate and facilitate customers so that there is no need to come to the branch office to get information related to the number of installments that must be paid, due dates, credit simulations, and Adira Finance information offers to customers. A large number of reviews from users received makes it difficult for developers to read them, it will take too much time and effort if they have to read and analyze them manually. To find out which reviews are classified as positive or negative reviews. need a sentiment analysis of the review. This study aims to find out how the opinions or opinions of its users on the services of the application, by analyzing these sentiments through a classification process using two algorithms, namely Support Vector Machine and Naïve Bayes. The data used amounted to 2000 data obtained from Google Playstore. Data is labeled into 2 classes namely positive class and negative. Furthermore, the data is divided into 70% training data and 30% testing data and methods used for testing using Bernoulli Naïve Bayes and Linear Kernel. It was concluded that the number of user reviews of the Adiraku application on the Google Play Store showed more positive comments, amounting to 1412 positive and negative reviews, which was 588 reviews. The Support Vector Machine algorithm performs better by getting the best accuracy value of 96%, while the Naïve Bayes algorithm gets an accuracy value of 85%.

Keywords


Adiraku; Sentiment Analysis; Support Vector Machine; Naive Bayes

Full Text:

PDF

References


L. Y. Siregar and M. I. P. Nasution, “Perkembangan Teknologi Informasi Terhadap Peningkatan Bisnis Online,” HIRARKI J. Ilm. Manaj. dan Bisnis, vol. 02, no. 01, pp. 71–75, 2020, [Online]. Available: http://journal.upp.ac.id/index.php/Hirarki%0APERKEMBANGAN

“FINANCE CABANG KOTA SALATIGA DENGAN PENDEKATAN TUGAS AKHIR Diajukan Kepada Program Studi Akuntansi Untuk Memperoleh Gelar Sarjana Akuntansi Oleh : SAMUEL PUTRA YOFINDA,” 2020.

M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022, doi: 10.31539/intecoms.v5i1.3708.

M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

U. Kusnia and F. Kurniawan, “Analisis Sentimen Review Aplikasi Media Berita OnlinePada Google Playmenggunakan Metode Algoritma Support Vector Machines (SVM) Dan Naive Bayes,” Explor. IT, vol. 14, no. 36, pp. 24–28, 2022.

P. P. A. Indriya Dewi Onantya, Indriati, “Analisis Sentimen Pada Ulasan Aplikasi BCA Mobile Menggunakan BM25 Dan Improved K-Nearest Neighbor,” J-Ptiik.Ub.Ac.Id, vol. 3, no. 3, pp. 2575–2580, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4754

H. Hernawati and W. G. Kedua, “Sentimen Analisis Operasi Tangkap Tangan Kpk Menurut Masyarakat Menggunakan Algoritma Support Vechtor Machine, Naïve Bayes, Berbasis Particle Swarm Optimizition,” Fakt. Exacta, vol. 12, no. 3, p. 230, 2019, doi: 10.30998/faktorexacta.v12i3.4992.

C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika

D. S. Utami and A. Erfina, “Analisis Sentimen Pinjaman Online di Twitter Menggunakan Algoritma Support Vector Machine (SVM),” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., vol. 1, no. 1, pp. 299–305, 2021.

J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, 2021, doi: 10.29207/resti.v5i6.3588.

H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,” J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.

I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” vol. 4, pp. 296–301, 2022, doi: 10.30865/json.v4i2.5381.

M. I. Putri and I. Kharisudin, “Penerapan Synthetic Minority Oversampling Technique (SMOTE) Terhadap Analisis Sentimen Data Review Pengguna Aplikasi Marketplace Tokopedia,” Prism. Pros. Semin. Nas. Mat., vol. 5, pp. 759–766, 2022, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

M. T. Anjasmoros, I. Istiadi, and F. Marisa, “Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode SVM Dan NBC (Studi Kasus: Komentar Pada Play Store),” Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020), no. Ciastech, pp. 489–498, 2020.

A. S. Rahayu and A. Fauzi, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine ( SVM ) Pada Analisis Sentimen Spotify,” vol. 4, pp. 349–354, 2022, doi: 10.30865/json.v4i2.5398.




DOI: http://dx.doi.org/10.38101/sisfotek.v13i1.2943

Refbacks

  • There are currently no refbacks.


 

JURNAL SISFOTEK GLOBAL

Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id

INDEXED BY:

   


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.