Analysis of COVID-19 Information Based on Social Media Big Data Classification Using the K-Means Data Mining Method

Lukas Umbu Zogara, Ahmad Sururi, Leny Tritanto Ningrum

Abstract


This Covid-19 began to infect almost all countries in early 2020, including in Indonesia, Covid-19 spread widely throughout the world and was declared as a global pandemic by the World Health Organization (WHO). In the current era of Big Data, large amounts of data have been generated and collected from a variety of rich data sources. Big Data is useful information and valuable knowledge. In this study, the method that will be used for data analysis is the K-Means algorithm with orange tools as a tool to display the results of data classification. One of the information that can be generated is Sentiment Analysis. The purpose of this research was to determining the information such as public sentiment on social media towards government policies in handling COVID-19. In this research, 2000 tweets were used. The keyword used related to government policies are sourced from several online media. The tools used to analyze this twitter data is using Orange Application. The selected keywords are covid19, lockdown, PSBB, and isolation. This keyword is used as a reference to retrieve tweet data from twitter. From each of these keywords, a sentiment classification process will be carried out automatically so that data or tweets are obtained and grouped into positive, negative and neutral sentiment classes. From the result of research conducted, public sentiment on social media towards government policies in handling this virus outbreak tends to be positive.

Keywords


Covid-19; Data Mining; Social Media; K-Means

Full Text:

PDF

References


Enda Esyudha Pratama, H. Sastypratiwi, and Yulianti, “Analisis Kecenderungan Informasi Terkait Covid-10 Berdasarkan Big Data Sosial Media dengan Menggunakan Metode Data Mining,” J. Inform. Polinema, vol. 7, no. 2, pp. 1–6, 2021, doi: 10.33795/jip.v7i2.453.

N. Elgendy and A. Elragal, “Big Data Analytics in Support of the Decision Making Process,” Procedia Comput. Sci., vol. 100, pp. 1071–1084, 2016, doi: 10.1016/j.procs.2016.09.251.

E. R. E. Sirait, “Implementasi Teknologi Big Data Di Lembaga Pemerintahan Indonesia,” J. Penelit. Pos dan Inform., vol. 6, no. 2, p. 113, 2016, doi: 10.17933/jppi.2016.060201.

C. E. wahyudi Utomo, “Implementasi Bussiness Intelligent dalam e-Tourism Berbasis Big Data,” J. Tour. Creat., vol. 3, no. 2, p. 163, 2019, doi: 10.19184/jtc.v3i2.14065.

Y. He, F. R. Yu, N. Zhao, H. Yin, H. Yao, and R. C. Qiu, “Big Data Analytics in Mobile Cellular Networks,” IEEE Access, vol. 4, pp. 1985–1996, 2016, doi: 10.1109/ACCESS.2016.2540520.

L. A. Tawalbeh, R. Mehmood, E. Benkhlifa, and H. Song, “Mobile Cloud Computing Model and Big Data Analysis for Healthcare Applications,” IEEE Access, vol. 4, pp. 6171–6180, 2016, doi: 10.1109/ACCESS.2016.2613278.

M. Marjani et al., “Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges,” IEEE Access, vol. 5, pp. 5247–5261, 2017, doi: 10.1109/ACCESS.2017.2689040.

C. K. Leung, Y. Chen, C. S. H. Hoi, S. Shang, Y. Wen, and A. Cuzzocrea, “Big Data Visualization and Visual Analytics of COVID-19 Data,” Proc. Int. Conf. Inf. Vis., vol. 2020-September, no. Iv, pp. 415–420, 2020, doi: 10.1109/IV51561.2020.00073.

Q. Qi and F. Tao, “Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison,” IEEE Access, vol. 6, pp. 3585–3593, 2018, doi: 10.1109/ACCESS.2018.2793265.

F. Nur, M. Zarlis, and B. B. Nasution, “Penerapan Algoritma K-Means Pada Siswa Baru Sekolahmenengah Kejuruan Untuk Clustering Jurusan,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 1, no. 2, pp. 100–105, 2017, doi: 10.30743/infotekjar.v1i2.70.

F. Yunita, “Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru,” Sistemasi, vol. 7, no. 3, p. 238, 2018, doi: 10.32520/stmsi.v7i3.388.

R. Helilintar and I. N. Farida, “Penerapan Algoritma K-Means Clustering Untuk Prediksi Prestasi Nilai Akademik Mahasiwa,” J. Sains dan Inform., vol. 4, no. 2, pp. 80–87, 2018, doi: 10.34128/jsi.v4i2.140.

A. Asroni, H. Fitri, and E. Prasetyo, “Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik),” Semesta Tek., vol. 21, no. 1, pp. 60–64, 2018, doi: 10.18196/st.211211.

M. A. Rheza and F. Metandi, “Implementasi Metode K-Means Clustering Untuk Penentuan Jenis Komentar Pada Tweet Pssi,” Just TI (Jurnal Sains Terap. Teknol. Informasi), vol. 12, no. 2, p. 73, 2020, doi: 10.46964/justti.v12i2.363.

X. Chen, M. Vorvoreanu, and K. P. C. Madhavan, “Mining social media data for understanding students’ learning experiences,” IEEE Trans. Learn. Technol., vol. 7, no. 3, pp. 246–259, 2014, doi: 10.1109/TLT.2013.2296520.




DOI: http://dx.doi.org/10.38101/sisfotek.v12i1.448

Refbacks

  • There are currently no refbacks.


 

JURNAL SISFOTEK GLOBAL

Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id

INDEXED BY:

   


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.