The Utilization of Decision Tree Algorithm In Order to Predict Heart Disease
Abstract
Keywords
Full Text:
PDFReferences
“Kementerian Kesehatan Republik Indonesia.” .
BHF, “UK Factsheet,” Br. Hear. Found., no. April, pp. 1–21, 2019.
J. J. Pangaribuan, C. Tedja, and S. Wibowo, “PERBANDINGAN METODE ALGORITMA C4.5 DAN EXTREME LEARNING MACHINE UNTUK MENDIAGNOSIS PENYAKIT JANTUNG KORONER,” 2019.
A. Rohman and D. M. Rochcham, “MODEL ALGORITMA C4.5 UNTUK PREDIKSI PENYAKIT JANTUNG,” 2018.
N. Khasanah, R. Komarudin, N. Afni, Y. I. Maulana, and A. Salim, “Skin Cancer Classification Using Random Forest Algorithm,” Sisfotenika, vol. 11, no. 2, p. 137, 2021, doi: 10.30700/jst.v11i2.1122.
S. Ath et al., “Jurnal Teknologi Terpadu HYBRID MACHINE LEARNING MODEL UNTUK MEMPREDIKSI PENYAKIT JANTUNG DENGAN METODE LOGISTIC REGRESSION DAN RANDOM,” vol. 8, no. 1, pp. 40–46, 2022.
I. M. El-Hasnony, O. M. Elzeki, A. Alshehri, and H. Salem, “Multi-Label Active Learning-Based Machine Learning Model for Heart Disease Prediction,” Sensors, vol. 22, no. 3, 2022, doi: 10.3390/s22031184.
S. Maldonado, J. López, and C. Vairetti, “An alternative SMOTE oversampling strategy for high-dimensional datasets,” Appl. Soft Comput. J., vol. 76, pp. 380–389, 2019, doi: 10.1016/j.asoc.2018.12.024.
D. Elreedy and A. F. Atiya, “A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance,” Inf. Sci. (Ny)., vol. 505, pp. 32–64, 2019, doi: 10.1016/j.ins.2019.07.070.
R. . Nurdin, “Pernyataan Keaslian,” Digilib.Uin-Suka.Ac.Id, no. April 2020, p. 506812, 2021.
“CDC - 2020 BRFSS Survey Data and Documentation.” .
R. Siringoringo, “KLASIFIKASI DATA TIDAK SEIMBANG MENGGUNAKAN ALGORITMA SMOTE DAN k-NEAREST NEIGHBOR,” 2018.
G. Fico, J. Montalva, A. Medrano, N. Liappas, G. Cea, and M. T. Arredondo, “EMBEC & NBC 2017,” IFMBE Proc., vol. 65, pp. 1089–1090, 2018, doi: 10.1007/978-981-10-5122-7.
S. Rahayu, T. Bharata Adji, N. Akhmad Setiawan, and D. Teknik Elektro dan Teknologi Informasi, “Penghitungan k-NN pada Adaptive Synthetic-Nominal (ADASYN-N) dan Adaptive Synthetic-kNN (ADASYN-kNN) untuk Data Nominal-Multi Kategori,” Ktrl.Inst (J.Auto.Ctrl.Inst), vol. 9, no. 2, p. 2017.
W. Sullivan, Machine Learning For Beginners Guide Algorithms, vol. 4, no. 1. 2017.
A. Cherfi, K. Nouira, and A. Ferchichi, “Very Fast C4.5 Decision Tree Algorithm,” Appl. Artif. Intell., vol. 32, no. 2, pp. 119–137, 2018, doi: 10.1080/08839514.2018.1447479.
M. Kretowski, Evolutionary Decision Trees in Large-Scale Data Mining. 2019.
A. Primajaya and B. N. Sari, “Random Forest Algorithm for Prediction of Precipitation,” Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, 2018, doi: 10.24014/ijaidm.v1i1.4903.
T. Djatna, M. K. D. Hardhienata, and A. F. N. Masruriyah, “An intuitionistic fuzzy diagnosis analytics for stroke disease,” J. Big Data, vol. 5, no. 1, 2018, doi: 10.1186/s40537-018-0142-7.
S. Zitao, “3 min of Machine Learning: Cross Vaildation,” Zitao’s Web, 2020. .
DOI: http://dx.doi.org/10.38101/sisfotek.v12i2.551
Refbacks
- There are currently no refbacks.
JURNAL SISFOTEK GLOBAL
Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id
INDEXED BY:

This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.