Analysis Sentiment of Twitter User on Indonesia's 2024 Presidential Election Using K-Means Algorithm

Leny Tritanto Ningrum, Dwi Rahmiyati

Abstract


The General Election is a five-year agenda of the Indonesian people in order to fulfill the political rights of every citizen for the election of the president and the legislature. In every election, especially during the campaign period, differences of opinion often occur between certain groups or factions, this often creates an atmosphere of political uproar in various parts of Indonesia. The purpose of this study is to see the level of sentiment of social media users towards the implementation of elections in Indonesia so as to minimize political upheaval that occurs in society during the elections to be held in 2024. The data that will be used in this research is data on Twitter users who have large volumes and are taken from all regions of Indonesia. To suit the data model used, this study will use the data mining method with the K-Means algorithm. The results of this study show the percentage level of public sentiment of Twitter users towards the 2024 election and presidential election. Public sentiment is positive, neutral and negative. Based on these results, it can provide input to the government so that it can make appropriate policies ahead of elections and presidential elections so as to create a peaceful atmosphere.

Keywords


Data Mining; K-Means; Sentiment; Social Media

Full Text:

PDF

References


and Z. . Saputri.N., A., D., “ANALISIS SENTIMEN MASYARAKAT TERHADAP PILPRES 2019 BERDASARKAN OPINI DARI TWITTER MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER,” vol. 7, no. 1, p. 6, 2021.

L. U. Zogara, A. Sururi, and L. T. Ningrum, “Analysis of COVID-19 Information Based on Social Media Big Data Classification Using the K-Means Data Mining Method,” J. Sisfotek Glob., vol. 12, no. 1, p. 18, 2022, doi: 10.38101/sisfotek.v12i1.448.

Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Zo. J. Sist. Inf., vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.

D. A. Vonega, A. Fadila, and D. E. Kurniawan, “Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 129–135, 2022, doi: 10.30871/jaic.v6i2.4300.

G. A. BUNTORO, R. ARIFIN, G. N. SYAIFUDDIIN, A. SELAMAT, O. KREJCAR, and H. FUJITA, “Implementation of a Machine Learning Algorithm for Sentiment Analysis of Indonesia‘s 2019 Presidential Election,” IIUM Eng. J., vol. 22, no. 1, pp. 78–92, 2021, doi: 10.31436/IIUMEJ.V22I1.1532.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.

T. D. Putra, E. Utami, and M. P.Kurniawan, “Analisis Sentimen Pemilu 2024 Dengan Naive Bayes Berbasis Particle Swarm

Optimization (Pso),” Explore, vol. 13, no. 1, pp. 1–5, 2022, [Online]. Available: https://ojs.utmmataram.ac.id/index.php/explore/article/view/617.

A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),” J. JUPITER, vol. 13, no. 1, p. 66, 2021.

Y. Sunoto and B. Wasito, “Analisis Testimonial Wisatawan Menggunakan Text Mining Dengan Metode Naive Bayes Dan Decision Tree , Studi Kasus Pada Hotel – Hotel Di Jakarta,” J. Inform. dan Bisnis Anal., vol. 3, no. 2, pp. 39–49, 2014.

P. Y. Saputra, “Implementasi Teknik Crawling untuk Pengumpulan Data dari Media Sosial Twitter,” Din. Dotcom, vol. 8, pp. 160–168, 2017.

F. A. Suharno and L. Listiyoko, “Aplikasi Berbasis Web dengan Metode Crawling sebagai Cara Pengumpulan Data untuk Mengambil Keputusan,” Semin. Nas. Rekayasa Teknol. Inf., no. November, pp. 105–109, 2018.

L. Lathifah, E. Handoyo, and Y. A. Adi Soetrisno, “Sistem Crawling Data Instrumen Akreditasi Berbasis Selenium Dan Pandas,” Transient J. Ilm. Tek. Elektro, vol. 10, no. 1, pp. 84–91, 2021, doi: 10.14710/transient.v10i1.84-91.

A. T. J. H, “Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining,” pp. 1–9.

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.

L. Hermawan and M. Bellaniar Ismiati, “Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval,” J. Transform., vol. 17, no. 2, p. 188, 2020, doi: 10.26623/transformatika.v17i2.1705.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

V. Chandani and R. S. Wahono, “Komparasi Algoritma Klasifikasi Machine Learning Dan Feature Selection pada Analisis Sentimen Review Film,” J. Intell. Syst., vol. 1, no. 1, pp. 55–59, 2015.

C. C. Aggarwal and C. X. Zhai, “Mining text data,” Min. Text Data, vol. 9781461432234, pp. 1–522, 2013, doi: 10.1007/978-1-4614-3223-4.

R. Helilintar and I. N. Farida, “Penerapan Algoritma K-Means Clustering Untuk Prediksi Prestasi Nilai Akademik Mahasiwa,” J. Sains dan Inform., vol. 4, no. 2, pp. 80–87, 2018, doi: 10.34128/jsi.v4i2.140.

A. Asroni, H. Fitri, and E. Prasetyo, “Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik),” Semesta Tek., vol. 21, no. 1, pp. 60–64, 2018, doi: 10.18196/st.211211.




DOI: http://dx.doi.org/10.38101/sisfotek.v13i2.9609

Refbacks

  • There are currently no refbacks.


 

JURNAL SISFOTEK GLOBAL

Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id

INDEXED BY:

   


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.