Customer Segmentation Based on RFM Value on the Sale of Electronic Kopmen BMI Using K-Means Clustering Algorithm

Zainul Hakim, Detin Sofia, Annida Rosna Fadhilah

Abstract


At present, the development of information technology is increasing rapidly. The need for information and data processing in various aspects of human life is critical, as well as customer data processing in BMI Consumer Cooperatives. This situation can impact information providers in an organization or company that requires fast, precise, and accurate data processing. The customer segmentation clustering system at the BMI Consumer Cooperative has yet to be implemented. A K-means clustering system is needed to increase customer loyalty, which can simplify the process of grouping customer segmentation. In this thesis, researchers use a descriptive method as a research methodology, which is used to get an overview and explanation of the state of the research object based on facts. As for the data collection method, researchers used interviews, observation, and literature study. In developing the system, researchers use prototyping. The customer segmentation information system application prototype describes the implementation of Astah's UML (Unified Modeling Language) and program planning used by Python. The conclusion of this prototype application can make it easier for managers to get information about customer segmentation data.

Keywords


K-Means Clustering; Customer Segmentation; Python; UML

Full Text:

PDF

References


Syafruddin, “ANALISIS KINERJA KEUANGAN PADA KOPERASI KONSUMEN PEGAWAI NEGERI REPUBLIK INDONESIA (KPRI) BUNG LLDIKTI WILAYAH IX MAKASSAR,” Eff. Innov. Learn. Orientat. Sme’S Bus. Perform. (Study Creat. Ind. Cr. Sub-Sector West Nusa Tenggara), vol. 7, no. 002, pp. 58–66, 2021.

M. W. R. Hutagalung and S. Batubara, “Peran Koperasi Syariah Dalam Meningkatkan Perekonomian dan Kesejahteraan Masyarakat Di Indonesia,” J. Ilm. Ekon. Islam, vol. 7, no. 03, pp. 1494–1498, 2021.

kyandra aisyah Margie, Yulianto, dimas ramdhani Triputra, and M. Darmansyah, Pengantar Bisnis Konsep, no. 1. 2020.

V. Herlinda and D. Darwis, “Analisis Clustering Untuk Recredesialing Fasilitas Kesehatan Menggunakan Metode Fuzzy C-Means,” Darwis, Dartono, vol. 2, no. 2, pp. 94–99, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

J. Susanto, B. Biqirrosyad, M. M. Junaidi, Y. Sudrajat, and T. Desyani, “Pengujian Black Box pada Aplikasi Desktop Penjualan Elektronik Menggunakan Metode Equivalence Partitioning,” J. Teknol. Sist. Inf. dan Apl., vol. 4, no. 1, p. 52, 2021, doi: 10.32493/jtsi.v4i1.8519.

A. T. Widiyanto and A. Witanti, “Segmentasi Pelanggan Berdasarkan Analisis RFM Menggunakan Algoritma K-Means Sebagai Dasar Strategi Pemasaran (Studi Kasus PT Coversuper Indonesia Global),” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 1, no. 1, pp. 204–215, 2021, doi: 10.24002/konstelasi.v1i1.4293.

Patel, “PEMANFAATAN APLIKASI SIAP DALAM PENGUMPULAN DATA YURIDIS PADA PENDAFTARAN TANAH SISTEMATIS LENGKAP DI KANTOR PERTANAHAN KABUPATEN TEBO,” pp. 9–25, 2019.

and P. A. B. Tim May, Malcolm Williams, Richard Wiggins, “Metode Penelitian di dalam Manuskrip Jurnal Ilmiah Keagamaan Sonny,” vol. 3, no. 1996, p. 6, 2021.

D. Karyaningsih, D. Susandi, and E. Juwita, “Android Trainer Wawancara Pekerjaan Dalam Bahasa Inggris Menggunakan Audio Visual Dengan Metode Prototype,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 10, no. 1, pp. 93–98, 2021, doi: 10.32736/sisfokom.v10i1.1012.

D. Y. Khairun, I. Al Hakim, and R. F. Abadi, “Jurnal Unik : Pendidikan Luar Biasa Pengembangan pedoman observasi anak berkesulitan membaca ( dyslexia ),” vol. 6, no. 1, pp. 59–64, 2021.

D. P. ASTUTI, “Upaya Peningkatan Kemampuan Belajar Siswa Kelas VII Dalam Pendidikan Berkarakter Dengan Pendekatan Metode Studi Pustaka,” הארץ, vol. 4, no. 8.5.2017, pp. 2003–2005, 2022.

M. Fitriani, G. F. Nama, and M. Mardiana, “Implementasi Association Rule Dengan Algoritma Apriori Pada Data Peminjaman Buku UPT Perpustakaan Universitas Lampung Menggunakan Metodologi CRISP-DM,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 41–49, 2022, doi: 10.23960/jitet.v10i1.2263.

G. Racolte et al., “Spherical K-Means and Elbow Method Optimizations With Fisher Statistics for 3D Stochastic DFN From Virtual Outcrop Models,” IEEE Access, vol. 10, pp. 63723–63735, 2022, doi: 10.1109/access.2022.3182332.

M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machine learning with applications to clustering,” Entropy, vol. 23, no. 6, pp. 1–17, 2021, doi: 10.3390/e23060759.

D. B. Surakarta, “Analisis karakteristik pelanggan komplain terhadap lama waktu tunggu pendaftaran rawat jalan 1,” pp. 192–198, 2022.

K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.




DOI: http://dx.doi.org/10.38101/sisfotek.v13i2.9693

Refbacks

  • There are currently no refbacks.


 

JURNAL SISFOTEK GLOBAL

Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id

INDEXED BY:

   


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.