Introduction of Indonesian Significant Alphabet Images (BISINDO) using The Convolutional Neural Network Algorithm

Stefanus Kabut, Yoseph Pius Kurniawan Kelen, Budiman Baso, Debora Chrisinta

Abstract


Bisindo alphabet recognition is the process by which a computer system or software recognizes and recognizes the letters of the Bisindo alphabet. The Bisindo alphabet is a special alphabet used to communicate with people who are hearing or speech impaired. This process uses image processing and machine learning techniques to identify and classify each letter based on its shape and visual characteristics. This study used a dataset consisting of 520 Kaggle images divided into 26 categories. These images are resized, normalized and scaled up to improve model performance. A Convolutional Neural Network (CNN) model was developed and achieved 99.12587% accuracy after training. After the model was developed, the API was implemented using Flask. API functionality is tested using online interactions, ensuring accurate responses to image classification before implementation in mobile applications.

Keywords


Alphabet; Bisindo; Convolutional Neural Network; API.

Full Text:

PDF

References


A. Hibatullah and I. Maliki, “Penerapan Metode Convolutional Neural Network,” Unikom, pp. 1–8, 2019.

C. Umam and L. B. Handoko, “Convolutional Neural Network (CNN) Untuk Identifkasi Karakter Hiragana,” Pros. Semin. Nas. Lppm Ump, vol. 0, no. 0, pp. 527–533, 2020, [Online]. Available: https://semnaslppm.ump.ac.id/index.php/semnaslppm/article/view/199

M. Sholawati, K. Auliasari, and F. Ariwibisono, “Pengembangan Aplikasi Pengenalan Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (Cnn),” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 134–144, 2022, doi: 10.36040/jati.v6i1.4507.

S. R. Yulian and S. Suhartono, “Pengenalan Bahasa Isyarat Huruf Abjad Menggunakan Metode Learning Vector Quantization (LVQ),” J. Masy. Inform., vol. 8, no. 1, pp. 1–8, 2017, doi: 10.14710/jmasif.8.1.31450.

Y. P. K. Kelen and B. Baso, “Klasifikasi Tenun Timor Menggunakan Metode SVM Berdasarkan Speeded Up Robust Features,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 6, pp. 1353–1360, 2023, doi: 10.25126/jtiik.1067625.

O. Mailani, I. Nuraeni, S. A. Syakila, and J. Lazuardi, “Bahasa Sebagai Alat Komunikasi Dalam Kehidupan Manusia,” Kampret J., vol. 1, no. 1, pp. 1–10, 2022, doi: 10.35335/kampret.v1i1.8.

C. Li, S. Xiuting, W. Yan, T. Development, and I. Technology, “陈 黎 1 ,盛秀婷 2 ,吴 岩 3 (1.,” vol. 4, no. 19, pp. 8–14, 2022.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.

A. Fathurohman, “Machine Learning Untuk Pendidikan: Mengapa Dan Bagaimana,” J. Inform. dan Teknol. Komput., vol. 1, no. 3, pp. 57–62, 2021.

A. Sunarya, S. Santoso, and W. Sentanu, “Sistem Pakar Untuk Mendiagnosa Gangguan Jaringan Lan,” Creat. Commun. Innov. Technol. J., vol. 8, no. 2, pp. 1–11, 2015.

Verdy and Ery Hartati, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Model Resnet-50,” J. Rekayasa Sist. Inf. dan Teknol., vol. 1, no. 3, pp. 199–206, 2024, doi: 10.59407/jrsit.v1i3.529.

I. Suhardin, A. Patombongi, and A. M. Islah, “MENGIDENTIFIKASI JENIS TANAMAN BERDASARKAN CITRA DAUN MENGGUNAKAN AlGORITMA CONVOLUTIONAL NEURAL NETWORK,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 6, no. 2, pp. 100–108, 2021, doi: 10.51876/simtek.v6i2.101.

Alfredolorentiars, “bisindo leter dataset.” https://www.kaggle.com/alfredolorentiars/datasets

Achmadnoer, “Bahasa Isyarat Indonesia (BISINDO) Alphabets”, [Online]. Available: https://www.kaggle.com/datasets/achmadnoer/alfabet-bisindo

Idhamozi, “Dataset berupa foto Bahasa Isyarat Indonesia. Indonesian Sign Language BISINDO.” https://www.kaggle.com/datasets/idhamozi/indonesian-sign-language-bisindo




DOI: http://dx.doi.org/10.38101/sisfotek.v15i1.15678

Refbacks

  • There are currently no refbacks.


 

JURNAL SISFOTEK GLOBAL

Organized by: Research Center and Community Development
Published by: Institut Teknologi dan Bisnis Bina Sarana Global
Jl. Aria Santika No.43A, Margasari, Kec. Karawaci, Kota Tangerang, Banten 15114
Phone. +62 552 2727
Email: lppm@global.ac.id

INDEXED BY:

   


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License..
Based on a work at https://journal.global.ac.id/index.php/sisfotek/index.